16.2-3: More Line Integrals
 Monday, April 18

Generic Line Integral

(16.2.15) Find $\int_{C} z^{2} d x+x^{2} d y+y^{2} d z$ where C is the line segment from $(1,0,0)$ to $(4,1,2)$.

Work

An cannonball of mass m is thrown at an angle α and initial velocity v_{0}. Calculate the amount of work gravity does on the cannonball (constant downward force $m g$) from the time it is fired until the time it hits the ground.

1. Show that a constant force field does no work on a particle that moves once around the circle $x^{2}+y^{2}=1$.
2. Is this also true for the force field $\mathbf{F}(x, y)=k\langle x, y\rangle$?
3. How much work will the above fields do if the particle only moves around part of a circle?

True or False?

1. $\int_{-C} f d s=-\int_{C} f d s$
2. If a particle travels in a closed loop then the total work done on the particle over the loop is zero.
3. If we have a region S in (u,v)-space and form a region R by the transformation $x=2 u+v, y=u-2 v$, then the area of R is $1 / 5$ the area of S.
4. If we instead apply the transformation $x=2 u+v, y=4 u+2 v$ then the region of R is zero.
5. If a particle is moving in a constant force field then the work done on the particle is proportional to the distance the object travels.
6. If a particle is moving in a constant force field then the work done on the particle is proportional to the particle's distance from its starting position.
