15.8-15.9: Triple Integrals, Change of Variables
 Monday, April 11

Spherical Coordinates

Find the volume of the solid E that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere with boundary $x^{2}+y^{2}+z^{2}=1$. What is the ratio of this volume to the volume of the sphere? Make an estimate before finding the answer.

Find the volume of the smaller wedge cut from a sphere of radius a by two planes that intersect along a diameter at an angle of $\pi / 6$.

True or False?

1. If a particle moves around on the surface of a sphere with $d \phi / d t$ and $d \theta / d t$ constant, then the speed of the particle is constant.
2. If a particle has fixed coordinates ϕ and θ but moves with $d \rho / d t$ constant, then the speed of the particle is constant.
3. $\int_{y=1}^{4} \int_{x=0}^{1}\left(x^{2}+\sqrt{y}\right) \sin \left(x^{2} y^{2}\right) d x d y \leq 9$.
4. Every point in \mathbb{R}^{3} is uniquely represented by a set of spherical coordinates (ρ, θ, ϕ).
5. $\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} d y d x=\int_{0}^{x} \int_{0}^{1} \sqrt{x+y^{2}} d x d y$
6. When $f(x, y, z)=1$, the integral $\iiint_{V} f(x, y, z) d x d y d z$ gives the volume of the region V.

Change of Variables

Evaluate the following integral by making the change of coordinates $u=3 x, v=2 y$:

$$
\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A
$$

where R is the region in the first quadrant bounded by the ellipse $9 x^{2}+4 y^{2}=1$.

