Problem 1

Determine, with proof, whether each of the following functions is continuous at the origin:

1. \(f(x, y) = \begin{cases} \frac{2xy}{x^2+y^2} & (x, y) \neq (0,0) \\ 0 & (x, y) = (0,0) \end{cases} \)

2. \(g(x, y) = \begin{cases} \frac{2xy^2}{x^4+y^4} & (x, y) \neq (0,0) \\ 0 & (x, y) = (0,0) \end{cases} \)
Problem 2
A particle is at position \((3.02, 1.97, 5.99) \). Use a linear approximation to estimate its distance from the origin.

Problem 3
Find the maximum and minimum values of the function \(f(x, y) = x^2 + 2xy - 2x - 2y + y^2 \) given the constraints \(x^2 + y^2 = 1 \).
Problem 4
Find the volume of the solid above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.

Problem 5
Find and classify all critical points of the function $f(x, y) = x^3 + xy + y^2$.
True or False?

1. If a function f has a single global maximum at (a, b) then $\nabla f(x, y)$ points along the line segment from (x, y) to (a, b).

2. For any unit vector u and any point a, $Df_{-u}(a) = -Df_u(a)$.

3. If f_x and f_y exist and are continuous in a neighborhood around (a, b) then f is differentiable at (a, b).

4. If f has a unique global maximum at a point a then the maximum value of f on a domain D occurs at the point in D closest to a.

5. There exists a function f with continuous second-order partial derivatives such that $f_x(x, y) = x + y^2$ and $f_y(x, y) = x - y^2$.

6. $f_y(a, b) = \lim_{y \to b} \frac{f(a, y) - f(a, b)}{y - b}$.

7. If f and g are both differentiable, then $\nabla(fg) = f\nabla g + g\nabla f$.

8. If $\nabla f(x, y) = \lambda \nabla g(x, y)$ for some λ then x is an extreme value of f on the set $\{(a, b) : g(a, b) = g(x, y)\}$.

9. If $f(x, y) = f(y, x)$ for all $x, y \in \mathbb{R}$ then $\int_0^a \int_0^b f(x, y) \, dy \, dx = \int_0^b \int_0^a f(x, y) \, dy \, dx$.

10. For any integrable function f, $\int_0^a \int_0^b f(x, y) \, dx \, dy = \int_0^b \int_0^a f(x, y) \, dx \, dy$.