Midterm 2: Practice Test
 Monday, April 4

Problem 1

Determine, with proof, whether each of the following functions is continuous at the origin:

1. $f(x, y)=\left\{\begin{array}{ll}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.
2. $g(x, y)=\left\{\begin{array}{ll}\frac{2 x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.

Problem 2

A particle is at position $\langle 3.02,1.97,5.99\rangle$. Use a linear approximation to estimate its distance from the origin.

Problem 3

Find the maximum and minimum values of the function $f(x, y)=x^{2}+2 x y-2 x-2 y+y^{2}$ given the constraints $x^{2}+y^{2}=1$.

Problem 4

Find the volume of the solid above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.

Problem 5

Find and classify all critical points of the function $f(x, y)=x^{3}+x y+y^{2}$.

True or False?

1. If a function f has a single global maximum at (a, b) then $\nabla f(x, y)$ points along the line segment from (x, y) to (a, b).
2. For any unit vector \mathbf{u} and any point $\mathbf{a}, D f_{-\mathbf{u}}(\mathbf{a})=-D f_{\mathbf{u}}(\mathbf{a})$.
3. If f_{x} and f_{y} exist and are continuous in a neighborhood around (a, b) then f is differentiable at (a, b).
4. If f has a unique global maximum at a point a then the maximum value of f on a domain D occurs at the point in D closest to a.
5. There exists a function f with continuous second-order partial derivatives such that $f_{x}(x, y)=x+y^{2}$ and $f_{y}(x, y)=x-y^{2}$.
6. $f_{y}(a, b)=\lim _{y \rightarrow b} \frac{f(a, y)-f(a, b)}{y-b}$.
7. If f and g are both differentiable, then $\nabla(f g)=f \nabla g+g \nabla f$.
8. If $\nabla f(x, y)=\lambda \nabla g(x, y)$ for some λ then x is an extreme value of f on the set $\{(a, b): g(a, b)=g(x, y)\}$.
9. If $f(x, y)=f(y, x)$ for all $x, y \in \mathbb{R}$ then $\int_{x=0}^{a} \int_{y=0}^{b} f(x, y) d y d x=\int_{x=0}^{b} \int_{y=0}^{a} f(x, y) d y d x$.
10. For any integrable function $f, \int_{x=0}^{a} \int_{y=x}^{a} f(x, y) d x d y=\int_{y=0}^{a} \int_{x=y}^{a} f(x, y) d x d y$.
