Midterm 2: Practice Test Monday, April 4

Problem 1

Determine, with proof, whether each of the following functions is continuous at the origin:

1.
$$f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
.

2.
$$g(x,y) = \begin{cases} \frac{2xy^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
.

Problem 2

A particle is at position (3.02, 1.97, 5.99). Use a linear approximation to estimate its distance from the origin.

Problem 3

Find the maximum and minimum values of the function $f(x, y) = x^2 + 2xy - 2x - 2y + y^2$ given the constraints $x^2 + y^2 = 1$.

Problem 4

Find the volume of the solid above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.

Problem 5

Find and classify all critical points of the function $f(x, y) = x^3 + xy + y^2$.

True or False?

- 1. If a function f has a single global maximum at (a, b) then $\nabla f(x, y)$ points along the line segment from (x, y) to (a, b).
- 2. For any unit vector **u** and any point **a**, $Df_{-\mathbf{u}}(\mathbf{a}) = -Df_{\mathbf{u}}(\mathbf{a})$.
- 3. If f_x and f_y exist and are continuous in a neighborhood around (a, b) then f is differentiable at (a, b).
- 4. If f has a unique global maximum at a point **a** then the maximum value of f on a domain D occurs at the point in D closest to **a**.
- 5. There exists a function f with continuous second-order partial derivatives such that $f_x(x,y) = x + y^2$ and $f_y(x,y) = x - y^2$.
- 6. $f_y(a,b) = \lim_{y \to b} \frac{f(a,y) f(a,b)}{y b}$.
- 7. If f and g are both differentiable, then $\nabla(fg) = f\nabla g + g\nabla f$.
- 8. If $\nabla f(x,y) = \lambda \nabla g(x,y)$ for some λ then x is an extreme value of f on the set $\{(a,b) : g(a,b) = g(x,y)\}$.

9. If
$$f(x,y) = f(y,x)$$
 for all $x, y \in \mathbb{R}$ then $\int_{x=0}^{a} \int_{y=0}^{b} f(x,y) \, dy \, dx = \int_{x=0}^{b} \int_{y=0}^{a} f(x,y) \, dy \, dx$.

10. For any integrable function f, $\int_{x=0}^{a} \int_{y=x}^{a} f(x,y) dx dy = \int_{y=0}^{a} \int_{x=y}^{a} f(x,y) dx dy$.