Midterm 2: Practice Test

Monday, April 4

Problem 1

Determine, with proof, whether each of the following functions is continuous at the origin:

1. $f(x, y)=\left\{\begin{array}{ll}\frac{2 x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.

This function is NOT continuous at the origin. If we approach it along the line $y=0$ or $x=0$ then the limit will be zero, but along the line $y=x$ the limit is 1 .
2. $g(x, y)=\left\{\begin{array}{ll}\frac{2 x y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.

This function is continuous at the origin. The simplest route: since $y^{2} \leq x^{2}+y^{2},\left|\frac{2 x y^{2}}{x^{2}+y^{2}}\right| \leq|2 x|$ for all points (x, y). Since $\lim _{(x, y) \rightarrow 0}|2 x|=0$, the Squeeze theorem implies that the limit of g is also zero.
A second method: make the substitution $x=r \cos \theta, y=r \sin \theta$ and get $g(x, y)=2 r^{3} \sin ^{2} \theta \cos ^{2} \theta / r^{2}=$ $2 r \sin ^{2} \theta \cos ^{2} \theta$, which approaches zero as $r \rightarrow 0$.

Problem 2

A particle is at position $\langle 3.02,1.97,5.99\rangle$. Use a linear approximation to estimate its distance from the origin. If $D(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\nabla D(x, y, z)=\frac{1}{D(x, y, z)}\langle x, y, z\rangle$. If we approximate from the point $\langle 3,2,6\rangle$ and set $h=\langle\Delta x, \Delta y, \Delta z\rangle=\langle 0.02,-0.03,-0.01\rangle$, then we get

$$
D(3.02,1.97,5.99) \approx D(3,2,6)+\nabla D \cdot h=7+\frac{1}{7}\langle 3,2,6\rangle \cdot\langle 0.02,-0.03,-0.01\rangle=7-0.06 / 7
$$

Problem 3

Find the maximum and minimum values of the function $f(x, y)=x^{2}+2 x y-2 x-2 y+y^{2}$ given the constraints $x^{2}+y^{2}=1$.

Use Lagrange multipliers: if $g(x, y)=x^{2}+y^{2}$, then $f(x, y)=\lambda g(x, y)$ gives us the equations

$$
\begin{aligned}
2 x+2 y-2 & =2 \lambda x \\
2 x+2 y-2 & =2 \lambda y \\
x^{2}+y^{2} & =1 .
\end{aligned}
$$

The left-hand sides of the first two equations are equal, implying that $\lambda x=\lambda y$. Therefore either $\lambda=0$ or $x=y$. If $\lambda=0$ then $x+y=1$, and together with the constraint $x^{2}+y^{2}=1$ it follows that $(1,0)$ and $(0,1)$ are possible solutions. In either case $f(x, y)=-1$.
If $\lambda \neq 0$ then $x=y$, which when paired with the constraint $x^{2}+y^{2}=1$ gives the solutions $\pm(\sqrt{2} / 2, \sqrt{2} / 2)$, in which case $f(x, y)=2 \mp 2 \sqrt{2}$.
Therefore, f hits a minimum of -1 at $(1,0)$ and $(0,1)$ and a maximum of $2+2 \sqrt{2}$ at $(-\sqrt{2} / 2,-\sqrt{2} / 2)$.

Problem 4

Find the volume of the solid above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$.
Polar coordinates will be the simplest way to set up the problem, but first we have to find where the cone and sphere intersect: if $z=\sqrt{x^{2}+y^{2}}$ then $z^{2}=x^{2}+y^{2}$, so the two shapes intersect whenever $x^{2}+y^{2}=1 / 2$. This makes the domain a circle with radius $r=\sqrt{2} / 2$.
Then at any point (r, θ) the vertical distance from the sphere to the cone is $\sqrt{1-r^{2}}-r$, so compute the volume as follows:

$$
\begin{aligned}
V & =\int_{r=0}^{\sqrt{2} / 2} \int_{\theta=0}^{2 \pi}\left(\sqrt{1-r^{2}}-r\right) r d \theta d r \\
& =2 \pi \int_{r=0}^{\sqrt{2} / 2} r \sqrt{1-r^{2}}-r^{2} d r \\
& =2 \pi\left[-\frac{1}{3}\left(1-r^{2}\right)^{3 / 2}-\frac{r^{3}}{3}\right]_{0}^{\sqrt{2} / 2} \\
& =2 \pi\left(\frac{-1}{3} \frac{\sqrt{2} 4}{-} \frac{1}{3} \frac{\sqrt{2}}{4}+\frac{1}{3}\right) \\
& =\frac{\pi}{3}(2-\sqrt{2})
\end{aligned}
$$

Problem 5

Find and classify all critical points of the function $f(x, y)=x^{3}+x y+y^{2}$.
$\nabla f(x, y)=\left\langle 3 x^{2}+y, x+2 y\right\rangle$, so setting the gradient to zero implies $y=-x / 2$, and so $3 x^{2}-x / 2=$ $x(3 x-1 / 2)=0$. This gives the two solutions $x=0$ and $x=1 / 6$, so the only two critical points occur at $(0,0)$, and $(1 / 6,-1 / 12)$.
The second partial derivatives of f are $\left[\begin{array}{cc}6 x & 1 \\ 1 & 2\end{array}\right]$, so the Second Derivative Test implies that the point $(0,0)$ is a saddle point and $(1 / 6,-1 / 12)$ is a local minimum.

True or False?

1. If a function f has a single global maximum at (a, b) then $\nabla f(x, y)$ points along the line segment from (x, y) to (a, b). FALSE: the gradient points in the direction of steepest ascent, which is not necessarily directly toward the global maximum. (For example, most points on a non-circular ellipse)
2. For any unit vector \mathbf{u} and any point $\mathbf{a}, D f_{-\mathbf{u}}(\mathbf{a})=-D f_{\mathbf{u}}(\mathbf{a})$. TRUE, since $\nabla f \cdot(-\mathbf{u})=-\nabla f \cdot \mathbf{u}$ at any point for any vector.
3. If f_{x} and f_{y} exist and are continuous in a neighborhood around (a, b) then f is differentiable at (a, b). TRUE
4. If f has a unique global maximum at a point a then the maximum value of f on a domain D occurs at the point in D closest to a. FALSE: say. $f(x, y)=-10 x^{2}-y^{2}$ where D is the line $y=1-x$.
5. There exists a function f with continuous second-order partial derivatives such that $f_{x}(x, y)=x+y^{2}$ and $f_{y}(x, y)=x-y^{2}$. FALSE, since we would have $f_{x y}(x, y)=2 y$ but $f_{y x}(x, y)=1$.
6. $f_{y}(a, b)=\lim _{y \rightarrow b} \frac{f(a, y)-f(a, b)}{y-b}$. TRUE.
7. If f and g are both differentiable, then $\nabla(f g)=f \nabla g+g \nabla f$. TRUE.
8. If $\nabla f(x, y)=\lambda \nabla g(x, y)$ for some λ then x is an extreme value of f on the set $\{(a, b): g(a, b)=g(x, y)\}$. FALSE: it could be a saddle point (for example, if $g(x, y)=0$ for all (x, y) then this is just the same as finding a critical point of f.)
9. If $f(x, y)=f(y, x)$ for all $x, y \in \mathbb{R}$ then $\int_{x=0}^{a} \int_{y=0}^{b} f(x, y) d y d x=\int_{x=0}^{b} \int_{y=0}^{a} f(x, y) d y d x$. TRUE
10. For any integrable function $f, \int_{x=0}^{a} \int_{y=x}^{a} f(x, y) d x d y=\int_{y=0}^{a} \int_{x=y}^{a} f(x, y) d x d y$. FALSE: the two integrals describe different triangular domains.
