15.2-3: Recap Monday, March 28

Optimization

Find the point(s) in the region $\{(x, y) : x^2 \le y \le 4\}$...

- 1. closest to the point (0, 1).
- 2. closest to the point (3, 0).
- 3. furthest from the origin.

Order of Integration

Set up a polar double integral in (r, θ) to find the volume of a cone of height h and radius R. If you integrate over r first, what does the remaining 1-dimensional integral represent? What if you integrate over θ first? Make some sketches.

Double Integrals

Sketch each given domain and set up an appropriate double integral $\iint_D f(x, y)$ on the domain. Then find the integral.

- 1. $D = \{(x, y) : x^2 + y^2 \le 1, y \le x\}, f(x, y) = e^{x^2 + y^2}$ 2. $D = \{(x, y) : x - 5 \le y \le 1 - x^2\}, f(x, y) = x - 2y$ 3. $D = \{(x, y) : 2y^2 \le x \le 1 + y^2\}, f(x, y) = xy - 1$
- 4. Given a cone of uniform density with radius R and height h, find the smallest r such that at least half of the cone's mass is within distance r of its axis of symmetry.