15.2-3: Recap

Monday, March 28

Optimization

Find the point(s) in the region $\left\{(x, y): x^{2} \leq y \leq 4\right\} \ldots$

1. closest to the point $(0,1)$.
2. closest to the point $(3,0)$.
3. furthest from the origin.

Order of Integration

Set up a polar double integral in (r, θ) to find the volume of a cone of height h and radius R. If you integrate over r first, what does the remaining 1-dimensional integral represent? What if you integrate over θ first? Make some sketches.

Double Integrals

Sketch each given domain and set up an appropriate double integral $\iint_{D} f(x, y)$ on the domain. Then find the integral.

1. $D=\left\{(x, y): x^{2}+y^{2} \leq 1, y \leq x\right\}, f(x, y)=e^{x^{2}+y^{2}}$
2. $D=\left\{(x, y): x-5 \leq y \leq 1-x^{2}\right\}, f(x, y)=x-2 y$
3. $D=\left\{(x, y): 2 y^{2} \leq x \leq 1+y^{2}\right\}, f(x, y)=x y-1$
4. Given a cone of uniform density with radius R and height h, find the smallest r such that at least half of the cone's mass is within distance r of its axis of symmetry.
