15.2-3: Recap

Monday, March 28

Optimization

Find the point(s) in the region $\left\{(x, y): x^{2} \leq y \leq 4\right\} \ldots$

1. closest to the point $(0,1)$.

If the distance from $(0,1)$ is $D(x, y)=\sqrt{x^{2}+(y-1)^{2}}$, then we can equivalently minimize $D^{2}:=$ $x^{2}+(y-1)^{2}$. The gradient is zero at $(0,1)$, which is in the domain.
2. closest to the point $(3,0)$.

Like the previous problem, we can say $D^{2}(x, y)=(x-3)^{2}+y^{2}$, and the gradient is zero only at $(3,0)$. This is not inside the domain, so the minimum appears on the border instead. Along the lower boundary $y=x^{2}$, we get $D^{2}(x)=(x-3)^{2}+x^{4}$. The derivative is $4 x^{3}+2(x-3)=4 x^{3}+2 x-6=$ $2(x-1)\left(2 x^{2}+2 x+3\right)$, which is zero only when $x=1$. Skip checking the top border by saying that the point $(1,1)$ is intuitively the closest (rather than the furthest).
3. furthest from the origin.

Checking the boundaries $y=x^{2}$ and $y=4$ show that the minimum does not occur along the interior of either boundary, so it must be at one of the vertices where the boundaries meet. The two points $(2,4)$ and $(-2,4)$ are equally far from the origin and these are the farthest of any in the domain.

Order of Integration

Set up a polar double integral in (r, θ) to find the volume of a cone of height h and radius R. If you integrate over r first, what does the remaining 1-dimensional integral represent? What if you integrate over θ first? Make some sketches.
$\int_{r=0}^{R} \int_{\theta=0}^{2 \pi} h-\frac{h}{R} r \cdot r d \theta d r=\int_{r=0}^{R} 2 \pi r h\left(1-\frac{r}{R}\right) d r$, which is integration by cylindrical shells.
$\int_{\theta=0}^{2 \pi} \int_{r=0}^{R} h\left(1-\frac{r}{R}\right) r d r d \theta=\int_{\theta=0}^{2} \pi h R^{2} / 6 d \theta$. This is a bit harder to interpret, but roughly the $h R^{2} \Delta \theta / 6$ is the volume of a triangular pyramid with height h and base side lengths R, R, and $\Delta \theta$.

Double Integrals

Sketch each given domain and set up an appropriate double integral $\iint_{D} f(x, y)$ on the domain. Then find the integral.

1. $D=\left\{(x, y): x^{2}+y^{2} \leq 1, y \leq x\right\}, f(x, y)=e^{x^{2}+y^{2}}$

The domain is a semicircle, so set up a polar integral: $\int_{r=0}^{1} \int_{\theta=-3 \pi / 4}^{\pi / 4} f(x, y) r d r d \theta$. Then express f in terms of r and integrate.
2. $D=\left\{(x, y): x-5 \leq y \leq 1-x^{2}\right\}, f(x, y)=x-2 y$

The domain is above a line but below a downward-facing parabola, so find the points of intersection: $(-3,-8)$ and $(2,-3)$. It's easier to express the bounds of y in terms of those on x, so get $\int_{x=-3}^{2} \int_{y=x-5}^{1-x^{2}} f(x, y) d x d y$. Then solve.
3. $D=\left\{(x, y): 2 y^{2} \leq x \leq 1+y^{2}\right\}, f(x, y)=x y-1$

This was an example in the book, except with x and y switched. The domain is sandwiched between two parabolas, so find the points of intersection: $(1,1)$ and $(1,-1)$. It's easier to express the bounds of x in terms of y, so get $\int_{y=-1}^{1} \int_{x=2 y^{2}}^{1+y^{2}} f(x, y) d x d y$. Then solve.
4. Given a cone of uniform density with radius R and height h, find the smallest r such that at least half of the cone's mass is within distance r of its axis of symmetry.
This is really a one-dimensional integration problem: the volume of the cone is $\frac{1}{3} \pi h R^{2}$, so we want to find the value M such that $\frac{1}{6} \pi h R^{2}=\int_{r=0}^{M} 2 \pi r h\left(1-\frac{r}{R}\right) d r$.
This simplifies to finding M such that $\frac{1}{12} R^{2}=M^{2} / 2-M^{3} / 3 R$. Simplify this by saying $M=c R$ to get $1 / 2=3 c^{2}-2 c^{3}$, which has the solution $c=1 / 2$. Is there some reason that this answer should be intuitive?

