15.1-2: Double Integrals Friday, March 18

Integrals over General Regions

Find the integral of the function $f(x, y) = xy^2$ over the triangle with vertices at (0, 0), (0, 1), and (1, 0) at least two different ways.

Find the volume of the solid under the surface z = xy and above the triangle with vertices (1, 1), (4, 1), (2, 2).

Evaluate the integral $\int_0^1 \int_{3y}^3 e^{x^2} dx dy$ by reversing the order of integration.

Polar Coordinates

Evaluate the integral $\iint_D e^{-x^2-y^2} dA$, where D is the region bounded by the semicircle $x = \sqrt{4-y^2}$ and the y-axis.

Find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$.