15.1-2: Double Integrals
 Friday, March 18

Integrals over General Regions

Find the integral of the function $f(x, y)=x y^{2}$ over the triangle with vertices at $(0,0),(0,1)$, and $(1,0)$ at least two different ways.

Find the volume of the solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1),(2,2)$.

Evaluate the integral $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$ by reversing the order of integration.

Polar Coordinates

Evaluate the integral $\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y -axis.

Find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$.

