15.1-2: Double Integrals

Friday, March 18

Integrals over General Regions

Find the integral of the function $f(x, y)=x y^{2}$ over the triangle with vertices at $(0,0),(0,1)$, and $(1,0)$ at least two different ways.

$$
\begin{aligned}
\int_{x=0}^{1} \int_{y=0}^{1-x} x y^{2} d y d x & =\left.\frac{1}{3} \int_{x=0}^{1} x y^{3}\right|_{0} ^{1-x} d x \\
& =\frac{1}{3} \int_{x=0}^{1} x(1-x)^{3} d x \\
& =\frac{1}{3} \int_{0}^{1} x-3 x^{2}+3 x^{3}-x^{4} d x \\
& =\left.\frac{1}{3}\left(x^{2} / 2-x^{3}+3 x^{4} / 4-x^{5} / 5\right)\right|_{0} ^{1} \\
& =\frac{1}{3}(1 / 2-1+3 / 4-1 / 5) \\
& =\frac{1}{60}
\end{aligned}
$$

The second way,

$$
\begin{aligned}
\int_{y=0}^{1} \int_{x=0}^{1-y} x y^{2} d y d x & =\left.\frac{1}{2} \int_{y=0}^{1} x^{2} y^{2}\right|_{0} ^{1-y} d y \\
& =\frac{1}{2} \int_{0}^{1} y^{2}(1-y)^{2} d y \\
& =\frac{1}{2} \int_{0}^{1} y^{4}-2 y^{3}+y^{2} d y \\
& =\left.\frac{1}{2}\left(y^{5} / 5-y^{4} / 2+y^{3} / 3\right)\right|_{0} ^{1} \\
& =1 / 60
\end{aligned}
$$

The two integrals are the same, as they should be.

Find the volume of the solid under the surface $z=x y$ and above the triangle with vertices $(1,1),(4,1),(2,2)$.
This time the triangle isn't a right triangle, so if we integrated along the x -axis first we would likely have to split the integral in two. So integrate along the y-axis instead:

$$
\begin{aligned}
\int_{y=1}^{2} \int_{x=y}^{6-2 y} x y d x d y & =\int_{y=1}^{2} \frac{y}{2}\left[(6-2 y)^{2}-y^{2}\right] d y \\
& =\frac{1}{2} \int_{y=1}^{2}\left(36 y-24 y^{2}+3 y^{3}\right) d y \\
& =\left.\frac{1}{2}\left[18 y^{2}-8 y^{3}+3 y^{4} / 4\right]\right|_{1} ^{2} \\
& =\frac{1}{2}(72-64+12-(18-8+3 / 4)) \\
& =37 / 8
\end{aligned}
$$

Evaluate the integral $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$ by reversing the order of integration.
The area being integrated over is a right triangle with vertices at $(0,0),(3,0),(3,1)$, so switch the order:

$$
\begin{aligned}
\int_{0}^{1} \int_{x=3 y}^{3} e^{x^{2}} d x d y & =\int_{x=0}^{3} \int_{y=0}^{x / 3} e^{x^{2}} d x d y \\
& =\frac{1}{3} \int_{x=0}^{3} x e^{x^{2}} d x \\
& =\left.\frac{1}{6} e^{x^{2}}\right|_{0} ^{3} \\
& =\left(e^{9}-1\right) / 6
\end{aligned}
$$

Polar Coordinates

Evaluate the integral $\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.

$$
\begin{aligned}
\iint_{D} e^{-x^{2}-y^{2}} d A & =\int_{r=0}^{2} \int_{\theta=-\pi / 2}^{\pi / 2} e^{r^{2}} r d r d \theta \\
& =\pi \int_{r=0}^{2} r e^{r^{2}} d r \\
& =\left.\frac{\pi}{2} e^{r^{2}}\right|_{0} ^{2} \\
& =\frac{\pi}{2}\left(e^{4}-1\right)
\end{aligned}
$$

Find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$. Express this as twice the integral of the function $z=\sqrt{16-x^{2}-y^{2}}$ over the xy-plane. Writing in polar coordinates makes the inner radius $r=2$ (from $x^{2}+y^{2} \geq 2^{2}$) and the outer radius $r=4$ (so $r^{2}=16$ and $z=0$, the smallest value for which it is well-defined.) Therefore,

$$
\begin{aligned}
\int_{r=2}^{4} \int_{\theta=0}^{2 \pi} \sqrt{16-r^{2}} r d r d \theta & =2 \pi \int_{\theta=0}^{2 \pi} r \sqrt{16-r^{2}} d r \\
& \left.=-\frac{2 \pi}{3}\left(16-r^{2}\right)^{3 / 2} \right\rvert\, 2^{4} \\
& =-\frac{2 \pi}{3}\left(0-12^{3 / 2}\right) \\
& =\frac{2 \pi}{3} 8 \cdot 3 \sqrt{3} \\
& =16 \pi \sqrt{3}
\end{aligned}
$$

