14.7-8: Optimization

Friday, March 11

Return of the Best Fit Line

Given the five points $(-3,-1),(0,1),(-1,0),(1,0)$, and $(2,1)$, we would like to find the line of the form $y=a x+b$ that best approximates the data. If our goal is to minimize the sum of the squared errors, our error function will be $E(a, b)=\sum_{i}\left(a x_{i}+b-y_{i}\right)^{2}=15 a^{2}+5 b^{2}+3-2 a b-2 b-10 a$. Find the optimal pair (a, b) and plot the appropriate line.

Maxima and Minima

Find the shortest distance from the point $(2,0,-3)$ to the plane $x+y+z=1$.

Minimize the function $f(x, y)=x^{2}+3 y^{2}-4 x-12 y+16$ given the constraints $-1 \leq x \leq 1,-1 \leq y \leq 1$.

Lagrange Multipliers

Find the maximum and minimum attainable values of $f(x, y)=x y$ subject to the contraint $4 x^{2}+y^{2}=8$.

Find the points on the ellipse $(x-1)^{2}+4(y-2)^{2}=1$ with the maximum and minimum distances from the origin.

Find the shortest distance from the point $(2,0,-3)$ to the plane $x+y+z=1$, this time by using Lagrange multipliers. What does this have to do with the distance formulas from chapter $12 ?$

