14.5-6: Chain Rule, Partial Derivatives
 Friday, March 4

Recap

Consider the function $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.
Find f_{x} and f_{y} at the point $(0,0)$ [hint: what are the values of f along the x and y axes?] and use them to approximate $f(0.1,-0.1)$. How good of an approximation is it to $f(0.1,-0.1)$?

Do the same with the function $g(x, y)=x^{2}+y^{2}$. Why is the quality of your two approximations so different?

Chain Rule

Define $f(x, y)=y e^{x}$. If $y=t^{2}$ and $x=\sqrt{t}$, find $\frac{\partial f}{\partial t}$ when $t=1$.

If $g(x, y, z)=x y z$ and $x=t, y=t, z=t^{2}$, find $\frac{\partial g}{\partial t}$ at $t=2$. What does this have to do with the power rule? What about the product rule?

Implicit Differentiation

Find $\partial z / \partial x$ and $\partial z / \partial y$ for an arbitrary point on the surface $x^{2}+2 y^{2}+3 z^{2}=1$.

Do the same for the surface defined by the equation $e^{z}=x y z$.

Directional Derivatives

Say we want to minimize the function $f(x, y)=x^{2}+2 y^{2}+x y+7 x$ and we are currently sitting at the point $(0,0)$. Using the limit definition of a directional derivative, find the derivative of f in the direction $\mathbf{v}=\langle-\sqrt{2} / 2, \sqrt{2} / 2\rangle$.

Will the function decrease faster if we head in the direction $\langle-1,1\rangle$ or $\langle-3 / 5,4 / 5\rangle$?

