14.5-6: Chain Rule, Partial Derivatives
 Friday, March 4

Recap

Consider the function $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$.
Find f_{x} and f_{y} at the point $(0,0)$ and use it to approximate $f(0.1,-0.1)$. How good of an approximation is it to $f(0.1,-0.1)$?
f_{x} and f_{y} are both zero, so the linear approximation at $(0,0)$ is $f(x, y)=0$. Our approximation $f(0.1,-0.1) \approx$ 0 is not that close to the true value of $-1 / 2$. This is because the function is not continuous at $(0,0)$ let alone differentiable, so the linear approximation is close to worthless.

Do the same with the function $g(x, y)=x^{2}+y^{2}$. Why is the quality of your two approximations so different? The linear approximation is again $g(x, y)=0$, but this time the function is differentiable and the approximation $g(0.1,-0.1) \approx 0$ is much closer to the true value of 0.02 .

Chain Rule

Define $f(x, y)=y e^{x}$. If $y=t^{2}$ and $x=\sqrt{t}$, find $\frac{\partial f}{\partial t}$ when $t=1$.
$\frac{d f}{d t}=f_{x} \frac{\partial x}{\partial t}+f_{y} \frac{\partial y}{\partial t}=y e^{x} / 2 \sqrt{t}+e^{x}(2 t)$. When $t=1, x=y=1$ and so this quantity is equal to $e / 2+2 e$.

If $g(x, y, z)=x y z$ and $x=t, y=t, z=t^{2}$, find $\frac{\partial g}{\partial t}$ at $t=2$. What does this have to do with the power rule? What about the product rule?

$$
\begin{aligned}
\partial g / \partial t & =\frac{\partial g}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial g}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial g}{\partial z} \frac{\partial z}{\partial t} \\
& =(y z)(1)+(x z)(1)+(x y)(2 t) \\
& =8+8+16 \\
& =32 .
\end{aligned}
$$

In general, if we set $f(x, y)=x y$ and $x=t, y=t$, then $\partial f / \partial t=x y^{\prime}+x^{\prime} y$, which is the product rule. If $g(t)=t^{n}$, then we can set $h\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}$, and the chain rule gives $g^{\prime}(t)=n t^{n-1}$.

Implicit Differentiation

Find $\partial z / \partial x$ and $\partial z / \partial y$ for an arbitrary point on the surface $x^{2}+2 y^{2}+3 z^{2}=1$.
Implicit differentiation gives $\frac{\partial z}{\partial x}=-3 z / x$ and $\frac{\partial z}{\partial y}=-3 z / 2 y$.

Do the same for the surface defined by the equation $e^{z}=x y z$.
Implicit differentiation with respect to x gives $e^{z} z^{\prime}=x^{\prime} y z+x y z^{\prime}$, so $\frac{\partial z}{\partial x}=y z /\left(e^{z}-x y\right)$. The function is symmetric with respect to x and y, so $\frac{\partial z}{\partial y}=x z /\left(e^{z}-x y\right)$.

Directional Derivatives

Say we want to minimize the function $f(x, y)=x^{2}+2 y^{2}+x y+7 x$ and we are currently sitting at the point $(0,0)$. Using the limit definition of a directional derivative, find the derivative of f in the direction $\mathbf{v}=\langle-\sqrt{2} / 2, \sqrt{2} / 2\rangle$.

$$
\begin{aligned}
f_{\mathbf{v}}(0,0) & =\lim _{h \rightarrow 0} \frac{f((0,0)=h \mathbf{v})-f(0,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(-h \sqrt{2} 2, h \sqrt{2} 2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2} / 2+h^{2}-h^{2} / 2-7 h \sqrt{2} 2}{h} \\
& =-7 \sqrt{2} / 2 .
\end{aligned}
$$

Will the function decrease faster if we head in the direction $\langle-1,1\rangle$ or $\langle-3 / 5,4 / 5\rangle$?
The directional derivative in the direction $\langle-3 / 5,4 / 5\rangle$ is $-21 / 5$ which is smaller in magnitude than $-7 \sqrt{2} / 2$ (the directional derivative in the direction $\langle-1,1\rangle$), so the function will decrease faster going in the direction $\langle-1,1\rangle$.

