14.5-6: Chain Rule, Partial Derivatives Friday, March 4

Recap

Consider the function $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$. Find f_x and f_y at the point (0,0) and use it to approximate f(0.1, -0.1). How good of an approximation is

it to f(0.1, -0.1)?

 f_x and f_y are both zero, so the linear approximation at (0,0) is f(x,y) = 0. Our approximation $f(0.1, -0.1) \approx$ 0 is not that close to the true value of -1/2. This is because the function is not continuous at (0,0) let alone differentiable, so the linear approximation is close to worthless.

Do the same with the function $g(x, y) = x^2 + y^2$. Why is the quality of your two approximations so different? The linear approximation is again q(x,y) = 0, but this time the function is differentiable and the approximation $g(0.1, -0.1) \approx 0$ is much closer to the true value of 0.02.

Chain Rule

Define $f(x, y) = ye^x$. If $y = t^2$ and $x = \sqrt{t}$, find $\frac{\partial f}{\partial t}$ when t = 1. $\frac{df}{dt} = f_x \frac{\partial x}{\partial t} + f_y \frac{\partial y}{\partial t} = ye^x/2\sqrt{t} + e^x(2t)$. When t = 1, x = y = 1 and so this quantity is equal to e/2 + 2e.

If g(x, y, z) = xyz and $x = t, y = t, z = t^2$, find $\frac{\partial g}{\partial t}$ at t = 2. What does this have to do with the power rule? What about the product rule?

$$\partial g/\partial t = \frac{\partial g}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial g}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial g}{\partial z}\frac{\partial z}{\partial t}$$
$$= (yz)(1) + (xz)(1) + (xy)(2t)$$
$$= 8 + 8 + 16$$
$$= 32.$$

In general, if we set f(x,y) = xy and x = t, y = t, then $\partial f/\partial t = xy' + x'y$, which is the product rule. If $g(t) = t^n$, then we can set $h(x_1, \ldots, x_n) = x_1 x_2 \cdots x_n$, and the chain rule gives $g'(t) = nt^{n-1}$.

Implicit Differentiation

Find $\partial z/\partial x$ and $\partial z/\partial y$ for an arbitrary point on the surface $x^2 + 2y^2 + 3z^2 = 1$. Implicit differentiation gives $\frac{\partial z}{\partial x} = -3z/x$ and $\frac{\partial z}{\partial y} = -3z/2y$.

Do the same for the surface defined by the equation $e^z = xyz$. Implicit differentiation with respect to x gives $e^z z' = x'yz + xyz'$, so $\frac{\partial z}{\partial x} = yz/(e^z - xy)$. The function is symmetric with respect to x and y, so $\frac{\partial z}{\partial y} = xz/(e^z - xy)$.

Directional Derivatives

Say we want to minimize the function $f(x,y) = x^2 + 2y^2 + xy + 7x$ and we are currently sitting at the point (0,0). Using the limit definition of a directional derivative, find the derivative of f in the direction $\mathbf{v} = \langle -\sqrt{2}/2, \sqrt{2}/2 \rangle$.

$$f_{\mathbf{v}}(0,0) = \lim_{h \to 0} \frac{f((0,0) = h\mathbf{v}) - f(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{f(-h\sqrt{2}2, h\sqrt{2}2)}{h}$$
$$= \lim_{h \to 0} \frac{h^2/2 + h^2 - h^2/2 - 7h\sqrt{2}2}{h}$$
$$= -7\sqrt{2}/2.$$

Will the function decrease faster if we head in the direction $\langle -1, 1 \rangle$ or $\langle -3/5, 4/5 \rangle$? The directional derivative in the direction $\langle -3/5, 4/5 \rangle$ is -21/5 which is smaller in magnitude than $-7\sqrt{2}/2$ (the directional derivative in the direction $\langle -1, 1 \rangle$), so the function will decrease faster going in the direction $\langle -1, 1 \rangle$).