13.1-13.2: Vector Functions

Friday, February 12

Warmup

Critique the given answer to the following problem:

1. Do the lines given by $L_{1}=\langle 1,2,3\rangle+t\langle 2,-1,-2\rangle$ and $L_{2}=\langle 3,6,-1\rangle+t\langle-1,3,0\rangle$ intersect?

Check whether the lines intersect by seeing whether there is a value of t such that the two points given by t are equal:

$$
\begin{aligned}
\langle 1,2,3\rangle+t\langle 2,-1,-2\rangle & =\langle 3,6,-1\rangle+t\langle-1,3,0\rangle \\
1+2 t & =3-t \\
2-t & =6+3 t \\
3-2 t & =-1 .
\end{aligned}
$$

The first equation gives $t=2 / 3$, the second gives $t=-1$, and the third gives $t=2$. There is no value of t that satisfies all three equations, and the lines therefore do not intersect.

Sketch the curves given by the following equations:

1. $z=y^{2}-x$
2. $z^{2}=x^{2}$
3. $x^{2}=z+y^{2}+1$
4. $z=\sin t, x=\cos t, y=1$

Space Curves

At what points does the curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersect the paraboloid $z=x^{2}+y^{2}$?

Derivatives and Integrals

A particle is moving along the curve $x=t, y=t^{2}-t$.

1. Find the unit vector tangent to its path at $t=2$.
2. Find its speed at $t=2$.
3. At what points in time is the particle moving directly away from the origin?
4. When and where is the particle's speed at a minimum?

Find a vector equation for the tangent line to the curve of intersection of the cylinders $x^{2}+y^{2}=25$ and $y^{2}+z^{2}=20$ at the point $(3,4,2)$.

The curves $\mathbf{r}_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\mathbf{r}_{2}(t)=\langle\sin t \sin 2 t, t\rangle$ intersect at the origin. Explain how to find their angle of intersection.

Bonus: Graph the curve with parametric equations $x=\cos t, y=\sin t \cos t, z=\sin ^{2} t$. It may help to graph the projections of the curve on the $\mathrm{x}-\mathrm{y}, \mathrm{x}-\mathrm{z}$, and $\mathrm{y}-\mathrm{z}$ planes.

