12.4-5: Cross Product, Lines and Planes
 Friday, February 5

Warmup

1. Find the projection of the vector $\langle 1,2\rangle$ onto $\langle 2,-1\rangle$. Make a sketch.
2. Find the projection of the vector $\langle 3,2,1\rangle$ onto $\langle 2,0,0\rangle$. Make a sketch.
3. One student is pushing a door open with a force of 50 N at a 45° angle relative to the body of the door. Another is pushing it shut with a force of 40 N perpendicular to the body of the door. A third is pushing with a force of 30 N along the axis from the end of the door to its hinge. Which way will the door move? Make a sketch.
4. Find the determinant of the matrix

$$
\left(\begin{array}{ccc}
-1 & -1 & 1 \\
1 & -2 & 0 \\
0 & 3 & 3
\end{array}\right) .
$$

What does it tell you about the volume of a parallelepiped with one vertex at the origin and adjacent vertices at $(0,3,3),(1,-2,0)$, and $(-1,-1,1)$?

Matching

What do each of the following expressions have to say about the picture below? (Suppose the picture is embedded in three-dimensional space, so the cross product is well-defined.)

1. $a \times b$
2. $b \times a$
3. $(a \cdot b) /|a|$
4. $a(a \cdot b) /|a|^{2}$
5. $b-a(a \cdot b) /|a|^{2}$
6. $|a \times b| /|a|$

7. $|a \times b| / 2$

Lines and Planes

1. If a plane is represented in the form $a x+b y+c z=d$, what is the relation between $\langle a, b, c\rangle$ and the plane?
2. If the plane can also be written in the form $\left\{P_{0}+t \mathbf{u}+s \mathbf{v}: s, t \in \mathbb{R}\right\}$, what is the relation between \mathbf{u}, \mathbf{v}, and $\langle a, b, c\rangle$?
3. How would you describe the set of points \mathbf{x} such that $\mathbf{a} \cdot \mathbf{x}=1$ for some nonzero vector \mathbf{a} in \mathbb{R}^{2} ? \mathbb{R}^{3} ? $\mathbb{R}^{4} ? ?$

Many Formulas

1. Given two parallel lines of the form $\mathbf{u}_{\mathbf{0}}+t \mathbf{v}$ and $\mathbf{v}_{\mathbf{0}}+t \mathbf{v}$, find a formula for the distance between the two lines. (Hint: it's the height of a triangle).
2. Find a formula for the distance between two planes in the form $\mathbf{n} \cdot x=k_{1}$ and $\mathbf{n} \cdot x=k_{2}$.
3. How can you use triple products to tell whether two lines of the form $\mathbf{u}_{\mathbf{0}}+t \mathbf{u}$ and $\mathbf{v}_{\mathbf{0}}+t \mathbf{v}$ are skew lines?
4. Come up with some questions of your own!

