12.4-5: Cross Product, Lines and Planes Friday, February 5

Warmup

- 1. Find the projection of the vector (1, 2) onto (2, -1). Make a sketch.
- 2. Find the projection of the vector (3, 2, 1) onto (2, 0, 0). Make a sketch.
- 3. One student is pushing a door open with a force of 50N at a 45° angle relative to the body of the door. Another is pushing it shut with a force of 40N perpendicular to the body of the door. A third is pushing with a force of 30N along the axis from the end of the door to its hinge. Which way will the door move? Make a sketch.
- 4. Find the determinant of the matrix

(-1)	$^{-1}$	1	
1	-2	0	
$\int 0$	3	3/	

What does it tell you about the volume of a parallelepiped with one vertex at the origin and adjacent vertices at (0,3,3), (1,-2,0), and (-1,-1,1)?

Matching

What do each of the following expressions have to say about the picture below? (Suppose the picture is embedded in three-dimensional space, so the cross product is well-defined.)

- 1. $a \times b$
- 2. $b \times a$
- 3. $(a \cdot b)/|a|$
- 4. $a(a \cdot b)/|a|^2$
- 5. $b a(a \cdot b)/|a|^2$
- 6. $|a \times b|/|a|$
- 7. $|a \times b|/2$

Lines and Planes

- 1. If a plane is represented in the form ax + by + cz = d, what is the relation between $\langle a, b, c \rangle$ and the plane?
- 2. If the plane can also be written in the form $\{P_0 + t\mathbf{u} + s\mathbf{v} : s, t \in \mathbb{R}\}$, what is the relation between \mathbf{u}, \mathbf{v} , and $\langle a, b, c \rangle$?
- 3. How would you describe the set of points **x** such that $\mathbf{a} \cdot \mathbf{x} = 1$ for some nonzero vector **a** in \mathbb{R}^2 ? \mathbb{R}^3 ? \mathbb{R}^4 ??

Many Formulas

- 1. Given two parallel lines of the form $\mathbf{u}_0 + t\mathbf{v}$ and $\mathbf{v}_0 + t\mathbf{v}$, find a formula for the distance between the two lines. (Hint: it's the height of a triangle).
- 2. Find a formula for the distance between two planes in the form $\mathbf{n} \cdot x = k_1$ and $\mathbf{n} \cdot x = k_2$.
- 3. How can you use triple products to tell whether two lines of the form $\mathbf{u}_0 + t\mathbf{u}$ and $\mathbf{v}_0 + t\mathbf{v}$ are skew lines?
- 4. Come up with some questions of your own!

