16.7-8: Surface Integrals, Stokes' Theorem
 Friday, April 29

Generic Surface Integral

(16.7.23) Find the surface integral $\iint_{S} \mathbf{F} \cdot d S$ where $\mathbf{F}(x, y, z)=\langle x y, y z, z x\rangle$ and S is the part of the paraboloid $z=4-x^{2}-y^{2}$ lying above the square $0 \leq x, y \leq 1$ and has upward orientation.

Special Surface Integral

(16.7.49) An electric charge at the origin generates an electric field given by $\mathbf{E}(r, \theta, \phi)=\frac{c r}{|r|^{3}}$, where c is a constant. Show that if S is the surface of a sphere centered at the origin then $\iint_{S} \mathbf{E} \cdot d \mathbf{S}$ does not depend on the radius of the sphere. What does this mean?

Stokes' Theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

(16.8.7) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\left\langle x+y^{2}, y+z^{2}, z+x^{2}\right\rangle$ and C is the (counterclockwise-oriented) boundary of the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$.

True or False?

1. If \mathbf{F} is a vector field then $\nabla \cdot \mathbf{F}$ is a vector field.
2. If \mathbf{F} is a vector field then $\nabla \times \mathbf{F}$ is a vector field.
3. I f has continuous partial derivatives on \mathbb{R}^{3} then $\nabla \cdot(\nabla \times f)=0$.
4. If f has continuous partial derivatives on \mathbb{R}^{3} and C is any circle then $\int_{C} \nabla f \cdot d \mathbf{r}=0$.
5. If $\mathbf{F}=\langle P, Q\rangle$ and $P_{y}=Q_{x}$ in an open region D then \mathbf{F} is conservative.
6. If \mathbf{F} and \mathbf{G} are vector fields and $\nabla \times \mathbf{F}=\nabla \times \mathbf{G}$ then $\mathbf{F}=\mathbf{G}$.
7. The work done by a conservative force field in moving a particle around a closed path is zero.
8. There is a vector field \mathbf{F} such that $\nabla \times \mathbf{F}\langle x, y, z\rangle$.
