16.7-8: Surface Integrals, Stokes” Theorem

Friday, April 29

Generic Surface Integral

(16.7.23) Find the surface integral [ F-dS where F(z,y, z) = (zy, yz, zz) and S is the part of the paraboloid
2z =4 — x? — y? lying above the square 0 < z,7 < 1 and has upward orientation.

S is the graph of a function in z and y, so Formula 9 from the chapter applies here:
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= 34 173/180.

Special Surface Integral

(16.7.49) An electric charge at the origin generates an electric field given by E(r, 0, ¢) = 175, Where ¢ is a

constant. Show that if S is the surface of a sphere centered at the origin then [, g E-dS does not depend on
the radius of the sphere. What does this mean?

E is always parallel to the vector normal to the surface of the sphere, so E- N = -5, a constant. Therefore
JIgE-dS = [[ % dS = 4mc, where we used the fact that r is constant on S.

Stokes’ Theorem
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The triangle is defined by the plane x4y + 2 = 1 and so has constant normal vector (1,1,1)/v/3. Therefore,
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so we just need to find the area of the triangle. It’s equilateral, so we can do this geometrically, getting that
the area is \/3/ 2. The integral is therefore —1.

True or False?

1.
2.
3.

If F is a vector field then V - F is a vector field. FALSE: the divergence is a scalar function.
If F is a vector field then V x F is a vector field. TRUE.
I f has continuous partial derivatives on R3 then V- (V x f) = 0. TRUE.

If f has continuous partial derivatives on R? and C' is any circle then |, ¢ V[ -dr =0. FALSE: this is
necessarily true only if the curl of f is zero.

If F = (P,Q) and P, = Q. in an open region D then F is conservative. FALSE: D must be simply
connected.

If F and G are vector fields and V x F = V x G then F = G. FALSE: F' can be G plus any function
whose curl is zero.

The work done by a conservative force field in moving a particle around a closed path is zero. TRUE.

There is a vector field F such that V x F(z,y, z). FALSE: this function has non-zero divergence, but
an earlier true/false implies that the divergence of the curl of any smooth function is zero.



