16.7-8: Surface Integrals, Stokes' Theorem
 Friday, April 29

Generic Surface Integral

(16.7.23) Find the surface integral $\iint_{S} \mathbf{F} \cdot d S$ where $\mathbf{F}(x, y, z)=\langle x y, y z, z x\rangle$ and S is the part of the paraboloid $z=4-x^{2}-y^{2}$ lying above the square $0 \leq x, y \leq 1$ and has upward orientation.
S is the graph of a function in x and y, so Formula 9 from the chapter applies here:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{D}\left(-P \frac{\partial g}{\partial x}-Q \frac{\partial g}{\partial y}+R\right) d A \\
& =\iint_{D}(-(x y)(-2 x)-y z(-2 y)+z x) d A \\
& =\iint_{D}\left(2 x^{2} y+2 y^{2} z+z x\right) d A \\
& =\iint_{D}\left(2 x^{2} y+2 y^{2}\left(4-x^{2}-y^{2}\right)+\left(4-x^{2}-y^{2}\right) x\right) d A \\
& =\int_{y=0}^{1} \int_{x=0}^{1}\left(2 x^{2} y+8 y^{2}-2 x^{2} y^{2}-2 y^{4}+4 x-x^{3}-y^{2} x\right) d x d y \\
& =\int_{y=0}^{1} \frac{2}{3} y+8 y^{2}-\frac{2}{3} y^{2}-2 y^{4}+2-\frac{1}{4}-y^{2} / 2 d y \\
& =1 / 3+8 / 3-2 / 9-2 / 5+2-1 / 4-1 / 6 \\
& =3+173 / 180
\end{aligned}
$$

Special Surface Integral

(16.7.49) An electric charge at the origin generates an electric field given by $\mathbf{E}(r, \theta, \phi)=\frac{c r}{|r|^{3}}$, where c is a constant. Show that if S is the surface of a sphere centered at the origin then $\iint_{S} \mathbf{E} \cdot d \mathbf{S}$ does not depend on the radius of the sphere. What does this mean?
\mathbf{E} is always parallel to the vector normal to the surface of the sphere, so $\mathbf{E} \cdot \mathbf{N}=\frac{c}{r^{2}}$, a constant. Therefore $\iint_{S} \mathbf{E} \cdot d \mathbf{S}=\iint_{S} \frac{c}{r^{2}} d S=4 \pi c$, where we used the fact that r is constant on S.

Stokes' Theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}
$$

(16.8.7) Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}(x, y, z)=\left\langle x+y^{2}, y+z^{2}, z+x^{2}\right\rangle$ and C is the (counterclockwise-oriented) boundary of the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$.

The triangle is defined by the plane $x+y+z=1$ and so has constant normal vector $\langle 1,1,1\rangle / \sqrt{3}$. Therefore,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{N} d S \\
& =\iint_{S}\langle-2 z,-2 x,-2 y\rangle \cdot\langle 1,1,1\rangle / \sqrt{3} d S \\
& =-2 / \sqrt{3} \iint_{S}(x+y+z) d S \\
& =-2 / \sqrt{3} \iint_{S} d S,
\end{aligned}
$$

so we just need to find the area of the triangle. It's equilateral, so we can do this geometrically, getting that the area is $\sqrt{3} / 2$. The integral is therefore -1 .

True or False?

1. If \mathbf{F} is a vector field then $\nabla \cdot \mathbf{F}$ is a vector field. FALSE: the divergence is a scalar function.
2. If \mathbf{F} is a vector field then $\nabla \times \mathbf{F}$ is a vector field. TRUE.
3. I f has continuous partial derivatives on \mathbb{R}^{3} then $\nabla \cdot(\nabla \times f)=0$. TRUE.
4. If f has continuous partial derivatives on \mathbb{R}^{3} and C is any circle then $\int_{C} \nabla f \cdot d \mathbf{r}=0$. FALSE: this is necessarily true only if the curl of f is zero.
5. If $\mathbf{F}=\langle P, Q\rangle$ and $P_{y}=Q_{x}$ in an open region D then \mathbf{F} is conservative. FALSE: D must be simply connected.
6. If \mathbf{F} and \mathbf{G} are vector fields and $\nabla \times \mathbf{F}=\nabla \times \mathbf{G}$ then $\mathbf{F}=\mathbf{G}$. FALSE: F can be G plus any function whose curl is zero.
7. The work done by a conservative force field in moving a particle around a closed path is zero. TRUE.
8. There is a vector field \mathbf{F} such that $\nabla \times \mathbf{F}\langle x, y, z\rangle$. FALSE: this function has non-zero divergence, but an earlier true/false implies that the divergence of the curl of any smooth function is zero.
