16.3-5: Green's Theorem, Curl
 Friday, April 22

Work

(16.3.23) Find the work done by the force field $\mathbf{F}(x, y)=\left\langle 2 y^{3 / 2}, 3 x \sqrt{y}\right\rangle$ in moving an object from $(1,1)$ to $(2,4)$.

Green's Theorem

(16.4.21) If C is the line segment from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$, show that

$$
\int_{C} x d y-y d x=x_{1} y_{2}-x_{2} y_{1}
$$

Use this to find a formula for the area of a triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$.

Curl

Use the curl operator to determine whether the vector field $\mathbf{F}(x, y, z)=\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle$ is conservative.

Divergence

A charged particle at the origin generates the electric field $\mathbf{E}(x, y)=\left\langle x /\left(x^{2}+y^{2}\right)^{3 / 2}, y /\left(x^{2}+y^{2}\right)^{3 / 2}\right\rangle$.

1. Find $\nabla \cdot \mathbf{E}$.
2. Find curves C_{1} and C_{2} such that $\oint_{C_{1}} \mathbf{E} \cdot \mathbf{n} d s=0$ and $\oint_{C_{2}} \mathbf{E} \cdot \mathbf{n} d s \neq 0$.

True/False

1. If \mathbf{F} is conservative then $\nabla \times \mathbf{F}=0$.
2. If \mathbf{F} is conservative then $\nabla \cdot \mathbf{F}=0$.
3. If $\nabla \times \mathbf{F}=0$ then \mathbf{F} is conservative.
4. Green's Theorem is just the Divergence Theorem in two dimensions.
5. $\operatorname{curl}(\operatorname{div}(\mathbf{F}))$ is not a meaningful expression.
