16.2-3: Line Integrals
 Friday, April 15

Recap: Change of Coordinates

(15.9.15) Evaluate the integral $\iint_{R}(x-3 y) d A$ where R is the triangular region with vertices $(0,0),(2,1),(1,2)$ given the transformation $x=2 u+v, y=u+2 v$.

Line Integrals

Find the work done by the force field $\mathbf{F}(x, y)=\left\langle x-y^{2}, y-x^{2}\right\rangle$ on a praticle that moves along the line segment from $(0,0)$ to $(2,1)$.

A student swings a ball of mass m on a string of radius r in a vertical circle. Use a line integral to calculate the work that gravity does on the ball (given constant downward force $m g$)...

1. as the ball goes from the top of its arc to the bottom.
2. over one complete revolution.

True or False?

1. The integral $\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \int_{\rho=0}^{1} \rho^{2} \sin \theta d \rho d \theta d \phi$ gives the volume of $1 / 4$ of a sphere.
2. $\int_{r=-1}^{1} \int_{\theta=0}^{1} e^{r^{2}+\theta^{2}} d \theta d r=\left[\int_{r=-1}^{1} e^{r^{2}} d r\right]\left[\int_{\theta=0}^{1} e^{\theta^{2}} d \theta\right]$
3. If C is a closed curve then $\int_{C} f d s=0$ for any function f.
4. If $\int_{C} f d s=0$ then C is a closed curve.
5. If the work done by a force \mathbf{F} on an object moving along a curve is W, then if the object moves along the curve in the opposite direction the work done by \mathbf{F} will be $-W$.
6. If a particle moves along a curve C, the total work done by a force \mathbf{F} on the object is independent of how quickly the particle moves.
7. If a force points only in the x direction then the work done by the force on a particle depends only on the particle's starting and ending x -positions.
