16.2-3: Line Integrals

Friday, April 15

Recap: Change of Coordinates

(15.9.15) Evaluate the integral $\iint_{R}(x-3 y) d A$ where R is the triangular region with vertices $(0,0),(2,1),(1,2)$ given the transformation $x=2 u+v, y=u+2 v$.
Solving for u and v in terms of x and y gives $u=(2 x-y) / 3, v=(2 y-x) / 3$. This change of coordinates moves the three vertices of the triangle to $(0,0),(1,0)$, and $(0,1)$, and $\partial(x, y) / \partial(u, v)=2 \cdot 2-1 \cdot 1=3$ (note that the area of the original triangle is 3 times the area of the transformed one), so the integral becomes

$$
\begin{aligned}
\iint_{R}(x-3 y) d A & =\int_{u=0}^{1} \int_{v=0}^{1-u}(2 u+v-3(u+2 v))[3] d u d v \\
& =3 \int_{u=0}^{1} \int_{v=0}^{1-u}-u-5 v d u d v \\
& =-3 \int_{u=0}^{1}\left[u v+\frac{5}{2} v^{2}\right]_{0}^{1-u} d u \\
& =-3 \int_{u=0}^{1} u(1-u)+\frac{5}{2}\left(u^{2}-2 u+1\right) d u \\
& =-3 \int_{u=0}^{1} \frac{3}{2} u^{2}-4 u+\frac{5}{2} d u \\
& =-3\left[\frac{1}{2} u^{3}-2 u^{2}+\frac{5}{2} u\right]_{0}^{1} \\
& =-3
\end{aligned}
$$

Line Integrals

Find the work done by the force field $\mathbf{F}(x, y)=\left\langle x-y^{2}, y-x^{2}\right\rangle$ on a praticle that moves along the line segment from $(0,0)$ to $(2,1)$.
Define a vector function $\mathbf{r}(t)$ so that $\mathbf{r}(0)=(0,0)$ and $\mathbf{r}(1)=(2,1): \mathbf{r}(t)=(2 t, t)$. Then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{t=0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{t=0}^{1}\left\langle 2 t-t^{2}, t-4 t^{2}\right\rangle \cdot\langle 2,1\rangle d t \\
& =\int_{t=0}^{1} 5 t-6 t^{2} d t \\
& =\left[\frac{5}{2} t^{2}-2 t^{3}\right]_{0}^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

The net work is positive.

A student swings a ball of mass m on a string of radius r in a vertical circle. Use a line integral to calculate the work that gravity does on the ball (given constant downward force $m g$)...

1. as the ball goes from the top of its arc to the bottom.

Parametrize the curve by $\mathbf{r}(t)=\langle r \cos t, r \sin t\rangle$, and get

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{t=\pi / 2}^{3 \pi / 2}\langle 0,-m g\rangle \cdot\langle-r \sin t, r \cos t\rangle d t \\
& =-m g r \int_{t=\pi / 2}^{3 \pi / 2} \cos t d t \\
& =-\left.m g r \sin t\right|_{t=\pi / 2} ^{3 \pi / 2} \\
& =2 m g r .
\end{aligned}
$$

Alternately, the field is conservative since the force is the gradient of $E(x, y)=-m g y$, so the total work is $-m g(-r)-m g(r)=2 m g r$.
2. over one complete revolution.

Same setup as before, but since t goes from 0 to 2π (or some equivalent) the net work will be zero. Also, because the field is conservative the integral over any closed curve is zero.

True or False?

1. The integral $\int_{\phi=0}^{\pi / 2} \int_{\theta=0}^{\pi / 2} \int_{\rho=0}^{1} \rho^{2} \sin \theta d \rho d \theta d \phi$ gives the volume of $1 / 4$ of a sphere. FALSE for two reasons: the $\sin \theta$ should be $\sin \phi$, and even with this change it only gives the volume of $1 / 8$ of a sphere.
2. $\int_{r=-1}^{1} \int_{\theta=0}^{1} e^{r^{2}+\theta^{2}} d \theta d r=\left[\int_{r=-1}^{1} e^{r^{2}} d r\right]\left[\int_{\theta=0}^{1} e^{\theta^{2}} d \theta\right]$

TRUE.
3. If C is a closed curve then $\int_{C} f d s=0$ for any function f.

Very FALSE.
4. If $\int_{C} f d s=0$ then C is a closed curve. FALSE: for example, the integral of $\sin x$ as x goes from 0 to 2π.
5. If the work done by a force \mathbf{F} on an object moving along a curve is W, then if the object moves along the curve in the opposite direction the work done by \mathbf{F} will be $-W$. TRUE.
6. If a particle moves along a curve C, the total work done by a force \mathbf{F} on the object is independent of how quickly the particle moves. TRUE.
7. If a force points only in the x direction then the work done by the force on a particle depends only on the particle's starting and ending x-positions. FALSE: the force's strength could depend on the y-position of the particle (Imagine swimming up a river versus walking along the bank. The river's current does different amounts of work.)

