15.5-8: Surface Area, Triple Integrals Friday, April 8

Surface Area

Using the formula $A(S) = \iint_D \sqrt{1 + f_x^2 + f_y^2} \, dA$, find the surface area of a sphere of radius a. (Hint: after finding f_x and f_y , convert to polar coordinates) Say $f(x,y) = \sqrt{a^2 - x^2 - y^2}$. Then $f_x(x,y) = \frac{-x}{f(x,y)}$ and $f_y = \frac{-y}{f(x,y)}$, so $f_x^2 + f_y^2 = -(x^2 + y^2)/f(x,y)^2$. Multiplying the integral by 2 to account for both halves of the sphere and converting to polar coordinates gives

$$\begin{aligned} A(S) &= 2 \int_{r=0}^{a} \int_{\theta=0}^{2\pi} \sqrt{1 - \frac{-r^2}{a^2 - r^2}} r \, dr \, d\theta \, dr \\ &= 4\pi \int_{r=0}^{a} r \sqrt{\frac{1}{a^2 - r^2}} \, dr \\ &= 4\pi \int_{r=0}^{a} r(a^2 - r^2)^{-1/2} \, dr \\ &= 4\pi [-\sqrt{a^2 - r^2}]_0^a \\ &= 4\pi (0 + a^2) \\ &= 4\pi a^2. \end{aligned}$$

Triple Integrals

Sketch the region E bounded by the surfaces $y = x^2$, z = 0, y + 2z = 4. Express the integral $\iiint_E f(x, y, z) dV$ as an iterated integral in the order of your choice, and find the volume of the region.

One potential order to find the volume:

$$V = \iiint dV$$

= $\int_{x=-2}^{2} \int_{y=0}^{x^{2}} \int_{z=0}^{(4-y)/2} dz \, dy \, dz$
= $\int_{x=-2}^{2} \int_{y=0}^{x^{2}} (4-y)/2 \, dy \, dx$
= $\int_{x=-2}^{2} [4y - y^{2}/4]_{0}^{x^{2}} \, dx$
= $\int_{x=-2}^{2} 4x^{2} - x^{4}/4 \, dx$
= $[\frac{4}{3}x^{3} - \frac{1}{20}x^{5}]_{-2}^{2}$
= $\frac{64}{3} - \frac{16}{5}$.

Cylindrical Coordinates

Find the volume of a cylinder using cylindrical coordinates. Set up the integral at least three different ways, and give a geometric interpretation of each ordering. Make lots of sketches.

If r is the variable in the outer integral, you summing up over cylindrical shells. If z is the outer variable, you are summing up disks. If θ is the outer variable, you are summing up triangular wedges.

Spherical Coordinates

Explain, with pictures, why $dV = \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$.

Start at a point ρ , θ , ϕ , and change by small amounts $d\rho$, $d\theta$, $d\phi$. The volume covered by the difference will (approximately!) be a rectangular prism with side lengths $d\rho$, $\rho d\theta$, and $\rho d\phi$ (the latter two lengths are magnified by ρ) because changes in an angle make a bigger change in distance the farther the point is from the origin.

Why is longitude measured from $180^{\circ}E$ to $180^{\circ}W$ but latitude measured only from $90^{\circ}N$ to $90^{\circ}S$? So that each point has a unique coordinate. If we tried to go to $180^{\circ}N$, we would end up back on the equator (which is already specified by $0^{\circ}N$).

Find the volume of a sphere using spherical coordinates. Set up the integral at least three different ways and give a geometric interpretation of each ordering. Make lots of sketches.

You will hopefully get $\frac{4}{3}\pi r^3$ for a sphere with radius r. If you integrade over ρ last, you will be summing over spherical shells (each of which has surface area $4\pi\rho^2$!), if you integrate over ϕ last you will be summing up conical-paper-cup-shaped wedges, and if you integrate over θ last you will be summing up orange-peel-shaped wedges.