15.5-8: Surface Area, Triple Integrals
 Friday, April 8

Surface Area

Using the formula $A(S)=\iint_{D} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d A$, find the surface area of a sphere of radius a. (Hint: after finding f_{x} and f_{y}, convert to polar coordinates)
Say $f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}}$. Then $f_{x}(x, y)=\frac{-x}{f(x, y)}$ and $f_{y}=\frac{-y}{f(x, y)}$, so $f_{x}^{2}+f_{y}^{2}=-\left(x^{2}+y^{2}\right) / f(x, y)^{2}$. Multiplying the integral by 2 to account for both halves of the sphere and converting to polar coordinates gives

$$
\begin{aligned}
A(S) & =2 \int_{r=0}^{a} \int_{\theta=0}^{2 \pi} \sqrt{1-\frac{-r^{2}}{a^{2}-r^{2}}} r d r d \theta d r \\
& =4 \pi \int_{r=0}^{a} r \sqrt{\frac{1}{a^{2}-r^{2}}} d r \\
& =4 \pi \int_{r=0}^{a} r\left(a^{2}-r^{2}\right)^{-1 / 2} d r \\
& =4 \pi\left[-\sqrt{a^{2}-r^{2}}\right]_{0}^{a} \\
& =4 \pi\left(0+a^{2}\right) \\
& =4 \pi a^{2} .
\end{aligned}
$$

Triple Integrals

Sketch the region E bounded by the surfaces $y=x^{2}, z=0, y+2 z=4$. Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in the order of your choice, and find the volume of the region.

One potential order to find the volume:

$$
\begin{aligned}
V & =\iiint d V \\
& =\int_{x=-2}^{2} \int_{y=0}^{x^{2}} \int_{z=0}^{(4-y) / 2} d z d y d z \\
& =\int_{x=-2}^{2} \int_{y=0}^{x^{2}}(4-y) / 2 d y d x \\
& =\int_{x=-2}^{2}\left[4 y-y^{2} / 4\right]_{0}^{x^{2}} d x \\
& =\int_{x=-2}^{2} 4 x^{2}-x^{4} / 4 d x \\
& =\left[\frac{4}{3} x^{3}-\frac{1}{20} x^{5}\right]_{-2}^{2} \\
& =\frac{64}{3}-\frac{16}{5}
\end{aligned}
$$

Cylindrical Coordinates

Find the volume of a cylinder using cylindrical coordinates. Set up the integral at least three different ways, and give a geometric interpretation of each ordering. Make lots of sketches.

If r is the variable in the outer integral, you summing up over cylindrical shells. If z is the outer variable, you are summing up disks. If θ is the outer variable, you are summing up triangular wedges.

Spherical Coordinates

Explain, with pictures, why $d V=\rho^{2} \sin \phi d \rho d \theta d \phi$.
Start at a point ρ, θ, ϕ, and change by small amounts $d \rho, d \theta, d \phi$. The volume covered by the difference will (approximately!) be a rectangular prism with side lengths $d \rho, \rho d \theta$, and $\rho d \phi$ (the latter two lengths are magnified by ρ) because changes in an angle make a bigger change in distance the farther the point is from the origin.

Why is longitude measured from $180^{\circ} \mathrm{E}$ to $180^{\circ} \mathrm{W}$ but latitude measured only from $90^{\circ} \mathrm{N}$ to $90^{\circ} \mathrm{S}$?
So that each point has a unique coordinate. If we tried to go to $180^{\circ} N$, we would end up back on the equator (which is already specified by $0^{\circ} N$).

Find the volume of a sphere using spherical coordinates. Set up the integral at least three different ways and give a geometric interpretation of each ordering. Make lots of sketches.

You will hopefully get $\frac{4}{3} \pi r^{3}$ for a sphere with radius r. If you integrade over ρ last, you will be summing over spherical shells (each of which has surface area $4 \pi \rho^{2}$!), if you integrate over ϕ last you will be summing up conical-paper-cup-shaped wedges, and if you integrate over θ last you will be summing up orange-peel-shaped wedges.

