Midterm 2: Review I
 Friday, April 1

Gradients

What is a gradient, and what is it good for? Give sketches and examples including but not limited to contour plots, limits, linear approximation, the Chain Rule, and optimization problems.

Second Derivative Test

Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, what is the Second Derivative test? Give all possible outcomes of the test and say what they tell you, providing sketches.

True or False?

1. If ∇f exists everywhere then f is continuous everywhere.
2. If $f_{x}=f_{y}=0$ at a point (x, y) then f is differentiable at (x, y).
3. If f is differentiable along every straight line going through a point (x, y) then f is differentiable at (x, y).
4. For any $x, f(x-\nabla f(x)) \leq f(x)$.
5. If $f(x, y)=1$ then $\iint_{D} f(x, y) d A$ is equal to the area of the domain D.
6. For any $a, b \in \mathbb{R}$ and continuous function $f, \int_{x=0}^{a} \int_{y=0}^{b} f(x, y) d y d x=\int_{y=0}^{b} \int_{x=0}^{a} f(x, y) d x d y$.
7. If $f(x, y)=g(x) h(y)$, then $\iint_{D} f(x, y) d A=\left(\iint_{D} g(x) d A\right)\left(\iint_{D} h(y) d A\right)$.
8. If $f_{x x}>0$ and $f_{y y}>0$ at a point (x, y) then the point (x, y) is a local minimum of the function f.
9. If (x, y) is a local minimum of a function f then f is differentiable at (x, y) and $\nabla f(x, y)=0$.
10. If $\nabla f(x, y)=0$ then (x, y) is a local minimum or maximum of f.
11. If $f_{x x}>0$ and $f_{y y}<0$ at a point (x, y) then (x, y) is a saddle point of f.
12. If ∇f is never zero then the minimum and maximum of f on a closed and bounded domain D must occur on the boundary.
13. If f has a critical point in the interior of a closed and bounded domain D then the minimum and maximum of f on D occur in the interior of D.
14. If x is a minimum of f given the constraints $g(x)=h(x)=0$ then $\nabla f(x)=\lambda \nabla g(x)$ and $\nabla f(x)=$ $\mu \nabla h(x)$ for some scalars λ and μ.
