
Midterm 2: Review I
Friday, April 1

Gradients

What is a gradient, and what is it good for? Give sketches and examples including but not limited to contour
plots, limits, linear approximation, the Chain Rule, and optimization problems.

Some possibilities:

• It’s the direction of steepest ascent of f at any given point

• If it’s zero, you have a local minimum, maximum, or saddle point.

• ∇f · u = fu at any point for any unit vector u (the dot product gives the directional derivative)

• −∇f gives the direction of steepest descent (if a ball is on a hill, it will roll in the direction −∇f)

• In a contour plot of f , the gradient is perpendicular to the level curves at any given point. The larger
the gradient, the steeper the ascent, the closer the level curves are.

• f(x+ h) ≈ f(x) +∇f(x) · h, so the gradient determines the best linear approximation to f .

• The gradient is the normal vector to the plane tangent to the graph of f at any given point.

• Chain rule: if r(t) is a vector function of t then df/dt = ∇f(r) · r′(t).

• Lagrange multipliers: If we want to minimize or maximize f(x) given g(x) = k, then the level curves
of f and g are tangent at an optimal point x, meaning that ∇f(x) = λ∇g(x) for some scalar λ.

Second Derivative Test

Given a function f : R2 → R, what is the Second Derivative test? Give all possible outcomes of the test and
say what they tell you, providing sketches.

Set D = fxxfyy − f2xy.

• If D > 0 and fxx > 0 (equivalently, fyy > 0) then the function is at a local minimum.

• If D > 0 and fxx < 0 (eq. fyy < 0) then the function is at a local maximum.

• If D < 0 then the function is at a saddle point.

• If D = 0, the second derivative test is inconclusive.

In linear algebra terms: f(x + h) ≈ f(x) +∇f · h + hT∇2fh, so if ∇f = 0 then the second derivative test
tells you whether ∇2f has two positive eigenvalues (local min), two negative eigenvalues (local max) or one
positive and one negative (saddle), or one or to zero eigenvalues (inconclusive, possibly any of the above).
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True or False?

1. If ∇f exists everywhere then f is continuous everywhere. TRUE: if a function is differentiable it must
be continuous (but not the other way round!)

2. If fx = fy = 0 at a point (x, y) then f is differentiable at (x, y). FALSE: it might not even be
continuous! (come up with examples)

3. If f is differentiable along every straight line going through a point (x, y) then f is differentiable at
(x, y). FALSE: Still might not even be continuous!

4. For any x, f(x−∇f(x)) ≤ f(x). FALSE: the negative gradient is a descent direction, so what’s true
is that if ∇f 6= 0 then there exists λ > 0 (possibly very small) such that f(x− λ∇f(x)) < f(x).

5. If f(x, y) = 1 then
∫∫

D
f(x, y) dA is equal to the area of the domain D. TRUE

6. For any a, b ∈ R and continuous function f ,
∫ a

x=0

∫ b

y=0
f(x, y) dy dx =

∫ b

y=0

∫ a

x=0
f(x, y) dx dy. TRUE

7. If f(x, y) = g(x)h(y), then
∫∫

D
f(x, y) dA =

(∫∫
D
g(x) dA

) (∫∫
D
h(y) dA

)
. FALSE: you can split the

integral as a product of two single-variable integrals if the integral is over a rectangle.

8. If fxx > 0 and fyy > 0 at a point (x, y) then the point (x, y) is a local minimum of the function f .
FALSE: if fxy, fyx are large then it could be a saddle point.

9. If (x, y) is a local minimum of a function f then f is differentiable at (x, y) and ∇f(x, y) = 0. FALSE:
say, f(x, y) = |x|+ |y|.

10. If ∇f(x, y) = 0 then (x, y) is a local minimum or maximum of f . FALSE: it could be a saddle point.

11. If fxx > 0 and fyy < 0 at a point (x, y) then (x, y) is a saddle point of f . TRUE, IF (x, y) is a critical
point. Otherwise it’s definitely false.

12. If ∇f is never zero then the minimum and maximum of f on a closed and bounded domain D must
occur on the boundary. TRUE, assuming f is continuous and differentiable.

13. If f has a critical point in the interior of a closed and bounded domain D then the minimum and
maximum of f on D occur in the interior of D. FALSE. (e.g. f(x, y) = x2 − y2 on the unit circle)

14. If x is a minimum of f given the constraints g(x) = h(x) = 0 then ∇f(x) = λ∇g(x) and ∇f(x) =
µ∇h(x) for some scalars λ and µ.

FALSE: ∇f(x) = λ∇g(x) + µ∇h(x) for some λ, µ.
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