10.2/10.3: Parametric Curves and Polar Coordinates $_{\rm Friday,\ January\ 22}$

Warmup

1.	$\sin(\pi/2) =$	4. $\sin(5\pi/3) =$	7.	$\frac{d}{dx}\sin(\cos^2(x))$
2.	$\sin(5\pi/4) =$	5. $\sin(2\theta) =$	8.	$\frac{d}{dx}x\cos x$
3.	$\cos(5\pi/3) =$	6. $\cos(2\theta) =$	9.	$\frac{d}{dx}\frac{x}{\sin x}$

- 1. Given (x, y), what is (r, θ) ?
- 2. Given (r, θ) , what is (x, y)?
- 3. Describe the path: $(x,y)=(-\sin(3t),\cos(3t)), 0\leq t\leq\pi$
- 4. L'Hospital's rule says what?

Calculus with Parametric Curves

If $x = e^t$, $y = te^{-t}$, find dy/dx and d^2y/dx^2 , with and without eliminating the parameter. When is the curve concave upward?

If $x = 3t^2 + 1$ and $y = t^3 - 1$, at what points on the curve does the tangent line have slope $\frac{1}{2}$?

Find the slope of the tangent line to the trochoid $x = r\theta - d\sin\theta$, $y = r - d\cos\theta$ in terms of θ . (Here, the particle is distance d from the center of a circle of radius r, rolling on a flat surface.) Find all horizontal and vertical tangents.

Polar coordinates

Plot. Express in Cartesian coordinates and in at least two other ways in polar coordinates:

1. $(2, 3\pi/2)$ 2. $(3, -\pi/3)$ 3. $(1, 5\pi/6)$

Express in both Cartesian and polar coordinates:

- 1. A line through the origin that makes an angle of $\pi/6$ with the positive x-axis.
- 2. A vertical line through the point (3,3).

Find the slope of the tangent line to the given curve at the point specified:

1.
$$r = 2\cos\theta, \theta = \pi/3$$

2. $r = 1 + \sin 2\theta, \theta = \pi/4$
3. $r = 1/\theta, \theta = \pi$.