# 10.2/10.3: Parametric Curves and Polar Coordinates <br> Friday, January 22 

## Warmup

1. $\sin (\pi / 2)=$
2. $\sin (5 \pi / 4)=$
3. $\cos (5 \pi / 3)=$
4. $\sin (5 \pi / 3)=$
5. $\sin (2 \theta)=$
6. $\cos (2 \theta)=$
7. $\frac{d}{d x} \sin \left(\cos ^{2}(x)\right)$
8. $\frac{d}{d x} x \cos x$
9. $\frac{d}{d x} \frac{x}{\sin x}$
10. Given $(x, y)$, what is $(r, \theta)$ ?
11. Given $(r, \theta)$, what is $(x, y)$ ?
12. Describe the path: $(x, y)=(-\sin (3 t), \cos (3 t)), 0 \leq t \leq \pi$
13. L'Hospital's rule says what?

## Calculus with Parametric Curves

If $x=e^{t}, y=t e^{-t}$, find $d y / d x$ and $d^{2} y / d x^{2}$, with and without eliminating the parameter. When is the curve concave upward?

If $x=3 t^{2}+1$ and $y=t^{3}-1$, at what points on the curve does the tangent line have slope $\frac{1}{2}$ ?

Find the slope of the tangent line to the trochoid $x=r \theta-d \sin \theta, y=r-d \cos \theta$ in terms of $\theta$. (Here, the particle is distance $d$ from the center of a circle of radius $r$, rolling on a flat surface.) Find all horizontal and vertical tangents.

## Polar coordinates

Plot. Express in Cartesian coordinates and in at least two other ways in polar coordinates:

1. $(2,3 \pi / 2)$
2. $(3,-\pi / 3)$
3. $(1,5 \pi / 6)$

Express in both Cartesian and polar coordinates:

1. A line through the origin that makes an angle of $\pi / 6$ with the positive $x$-axis.
2. A vertical line through the point $(3,3)$.

Find the slope of the tangent line to the given curve at the point specified:

1. $r=2 \cos \theta, \theta=\pi / 3$
2. $r=1+\sin 2 \theta, \theta=\pi / 4$
3. $r=1 / \theta, \theta=\pi$.
