10.2/10.3: Parametric Curves and Polar Coordinates
 Friday, January 22

Warmup

1. $\sin (\pi / 2)=1$
2. $\sin (5 \pi / 4)=-\sqrt{2} / 2$
3. $\cos (5 \pi / 3)=1 / 2$
4. $\sin (5 \pi / 3)=-\sqrt{3} / 2$
5. $\sin (2 \theta)=0$
6. $\cos (2 \theta)=1$
7. $\frac{d}{d x} \sin \left(\cos ^{2}(x)\right)=\cos \left(\cos ^{2}(x)\right) 2 \cos x(-\sin x)$
8. $\frac{d}{d x} x \cos x=\cos x-x \sin x$
9. $\frac{d}{d x} \frac{x}{\sin x}=\frac{1}{\sin x}-\frac{x}{\sin ^{2} x} \cos x$
10. Given (x, y), what is $(r, \theta) ? r=\sqrt{x^{2}+y^{2}}, \theta=\arctan y / x$
11. Given (r, θ), what is $(x, y) ? x=r \cos \theta, y=r \sin \theta$
12. Describe the path: $(x, y)=(-\sin (3 t), \cos (3 t)), 0 \leq t \leq \pi$. The particle starts at $(0,1)$ and travels counterclockwise one-and-a-half times around a circle of radius 1 .
13. L'Hospital's rule says what? If $f(x)=0$ and $g(x)=0$, then the derivative of f / g at $x=0$ is $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$. This can be useful for deciding whether a tangent line to a point on a parametric curve is horizontal or vertical.

Calculus with Parametric Curves

If $x=e^{t}, y=t e^{-t}$, find $d y / d x$ and $d^{2} y / d x^{2}$, with and without eliminating the parameter. When is the curve concave upward?
Without eliminating the parameter:

$$
\begin{gathered}
d y / d x=\left(t e^{-t}\right) /\left(e^{t}\right)^{\prime}=\left(e^{-t}-t e^{-t}\right) / e^{t}=e^{-2 t}(1-t) \\
d^{2} y / d x^{2}=\frac{\left(e^{-2 t}(1-t)\right)^{\prime}}{\left(e^{t}\right)^{\prime}}=\frac{-2 e^{-2 t}(1-t)-e^{-2 t}}{e^{t}}=(2 t-3) e^{-3 t}
\end{gathered}
$$

Since $e^{-3 t}$ is always positive, the curve is concave upward when $t>3 / 2$.
With eliminating the parameter: the function $y(t)$ is not invertible, but $x(t)$ is. So get $t=\ln x$, and $y=\ln x / x$. Therefore, $y^{\prime}=\frac{1-\ln x}{x^{2}}$ and $y^{\prime \prime}=(2 \ln x-3) / x^{3}$ (note the similarity to the expression for $y^{\prime \prime}$ in terms of t).
If $x=3 t^{2}+1$ and $y=t^{3}-1$, at what points on the curve does the tangent line have slope $\frac{1}{2}$?
$d y / d x=3 t^{2} / 6 t=t / 2$, so the tangent line to the curve has slope $\frac{1}{2}$ when $t=1$, which is at the point $(4,0)$.
Find the slope of the tangent line to the trochoid $x=r \theta-d \sin \theta, y=r-d \cos \theta$ in terms of θ. (Here, the particle is distance d from the center of a circle of radius r, rolling on a flat surface.) Find all horizontal and vertical tangents.

Polar coordinates

Plot. Express in Cartesian coordinates and in at least two other ways in polar coordinates:

1. $(2,3 \pi / 2):(x, y)=(0,-2),(r, \theta)=(2,-\pi / 2)=(-2, \pi / 2)$
2. $(3,-\pi / 3):(x, y)=(3 / 2,-3 \sqrt{3 / 2}),(r, \theta)=(3,5 \pi / 3)=(-3,2 \pi / 3)$
3. $(1,5 \pi / 6):(x, y=-\sqrt{3} / 2,1 / 2),(r, \theta)=(1,-7 \pi / 6)=(-1,-\pi / 6)$.

Express in both Cartesian and polar coordinates:

1. A line through the origin that makes an angle of $\pi / 6$ with the positive x-axis. $\tan (\pi / 6)=\sqrt{3} / 3$, so the line can be expressed in Cartesian coordinates as $y=\frac{\sqrt{3}}{3} x$.
In polar coordinates, $\theta=\pi / 6$ will do.
2. A vertical line through the point $(3,3)$.

In Cartesian coordinates, $x=3$.
In polar coordinates, $x=3$ implies that $r \cos \theta=3$, so $r=3 / \cos \theta=3 \sec \theta$.
Find the slope of the tangent line to the given curve at the point specified:

1. $r=2 \cos \theta, \theta=\pi / 3$

$$
\begin{aligned}
d y / d x & =\frac{d y / d \theta}{d x / d \theta} \\
& =\frac{(2 \cos \theta \cdot \sin \theta)^{\prime}}{\left(2 \cos ^{2} \theta\right)^{\prime}} \\
& =\frac{(\sin 2 \theta)^{\prime}}{(\cos 2 \theta-1)^{\prime}} \\
& =\frac{2 \cos 2 \theta}{-2 \sin 2 \theta} \\
& =\frac{-1}{-\sqrt{3}} \\
& =1 / \sqrt{3}
\end{aligned}
$$

2. $r=1+\sin 2 \theta, \theta=\pi / 4$

$$
\begin{aligned}
d y / d x & =\frac{((1+\sin 2 \theta) \sin \theta)^{\prime}}{((1+\sin 2 \theta) \cos \theta)^{\prime}} \\
& =\frac{(1+\sin 2 \theta) \cos \theta+2 \cos 2 \theta \sin \theta}{-(1+\sin 2 \theta \sin \theta)+2 \cos 2 \theta \cos \theta} \\
& =\frac{2 \sqrt{2} 2+0}{-2 \sqrt{2} / 2+0} \\
& =-1
\end{aligned}
$$

3. $r=1 / \theta, \theta=\pi$.

$$
\begin{aligned}
d y / d x & =\frac{(\sin \theta / \theta)^{\prime}}{(\cos \theta / \theta)^{\prime}} \\
& =\frac{(\theta \cos \theta-\sin \theta) / \theta^{2}}{(-\theta \sin \theta-\cos \theta) / \theta^{2}} \\
& =-\pi
\end{aligned}
$$

