## 10.2/10.3: Parametric Curves and Polar Coordinates Friday, January 22

## Warmup

- 1.  $\sin(\pi/2) = 1$
- 2.  $\sin(5\pi/4) = -\sqrt{2}/2$
- 3.  $\cos(5\pi/3) = 1/2$
- 4.  $\sin(5\pi/3) = -\sqrt{3}/2$
- 5.  $\sin(2\theta) = 0$
- 6.  $\cos(2\theta) = 1$
- 7.  $\frac{d}{dx}\sin(\cos^2(x)) = \cos(\cos^2(x))2\cos x(-\sin x)$
- 8.  $\frac{d}{dx}x\cos x = \cos x x\sin x$
- 9.  $\frac{d}{dx}\frac{x}{\sin x} = \frac{1}{\sin x} \frac{x}{\sin^2 x}\cos x$
- 1. Given (x, y), what is  $(r, \theta)$ ?  $r = \sqrt{x^2 + y^2}, \theta = \arctan y/x$
- 2. Given  $(r, \theta)$ , what is (x, y)?  $x = r \cos \theta, y = r \sin \theta$
- 3. Describe the path:  $(x, y) = (-\sin(3t), \cos(3t)), 0 \le t \le \pi$ . The particle starts at (0, 1) and travels counterclockwise one-and-a-half times around a circle of radius 1.
- 4. L'Hospital's rule says what? If f(x) = 0 and g(x) = 0, then the derivative of f/g at x = 0 is  $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ . This can be useful for deciding whether a tangent line to a point on a parametric curve is horizontal or vertical.

## Calculus with Parametric Curves

If  $x = e^t$ ,  $y = te^{-t}$ , find dy/dx and  $d^2y/dx^2$ , with and without eliminating the parameter. When is the curve concave upward?

Without eliminating the parameter:

$$\frac{dy}{dx} = \frac{(te^{-t})}{(e^{t})'} = \frac{(e^{-t} - te^{-t})}{e^{t}} = \frac{e^{-2t}(1-t)}{e^{t}}.$$
$$\frac{d^2y}{dx^2} = \frac{(e^{-2t}(1-t))'}{(e^{t})'} = \frac{-2e^{-2t}(1-t) - e^{-2t}}{e^{t}} = (2t-3)e^{-3t}.$$

Since  $e^{-3t}$  is always positive, the curve is concave upward when t > 3/2. With eliminating the parameter: the function y(t) is not invertible, but x(t) is. So get  $t = \ln x$ , and  $y = \ln x/x$ . Therefore,  $y' = \frac{1-\ln x}{x^2}$  and  $y'' = (2\ln x - 3)/x^3$  (note the similarity to the expression for y'' in terms of t).

If  $x = 3t^2 + 1$  and  $y = t^3 - 1$ , at what points on the curve does the tangent line have slope  $\frac{1}{2}$ ?

 $dy/dx = 3t^2/6t = t/2$ , so the tangent line to the curve has slope  $\frac{1}{2}$  when t = 1, which is at the point (4,0). Find the slope of the tangent line to the trochoid  $x = r\theta - d\sin\theta$ ,  $y = r - d\cos\theta$  in terms of  $\theta$ . (Here, the particle is distance d from the center of a circle of radius r, rolling on a flat surface.) Find all horizontal and vertical tangents.

## Polar coordinates

Plot. Express in Cartesian coordinates and in at least two other ways in polar coordinates:

- 1.  $(2, 3\pi/2)$ :  $(x, y) = (0, -2), (r, \theta) = (2, -\pi/2) = (-2, \pi/2)$
- 2.  $(3, -\pi/3)$ :  $(x, y) = (3/2, -3\sqrt{3/2}), (r, \theta) = (3, 5\pi/3) = (-3, 2\pi/3)$
- 3.  $(1, 5\pi/6)$ :  $(x, y = -\sqrt{3}/2, 1/2), (r, \theta) = (1, -7\pi/6) = (-1, -\pi/6).$



Express in both Cartesian and polar coordinates:

- 1. A line through the origin that makes an angle of  $\pi/6$  with the positive x-axis.  $\tan(\pi/6) = \sqrt{3}/3$ , so the line can be expressed in Cartesian coordinates as  $y = \frac{\sqrt{3}}{3}x$ . In polar coordinates,  $\theta = \pi/6$  will do.
- 2. A vertical line through the point (3,3). In Cartesian coordinates, x = 3.

In polar coordinates, x = 3 implies that  $r \cos \theta = 3$ , so  $r = 3/\cos \theta = 3 \sec \theta$ .

Find the slope of the tangent line to the given curve at the point specified:

1. 
$$r = 2\cos\theta, \theta = \pi/3$$

$$dy/dx = \frac{dy/d\theta}{dx/d\theta}$$
$$= \frac{(2\cos\theta \cdot \sin\theta)'}{(2\cos^2\theta)'}$$
$$= \frac{(\sin 2\theta)'}{(\cos 2\theta - 1)'}$$
$$= \frac{2\cos 2\theta}{-2\sin 2\theta}$$
$$= \frac{-1}{-\sqrt{3}}$$
$$= 1/\sqrt{3}.$$

2.  $r = 1 + \sin 2\theta, \theta = \pi/4$ 

$$dy/dx = \frac{\left(\left(1 + \sin 2\theta\right)\sin\theta\right)'}{\left(\left(1 + \sin 2\theta\right)\cos\theta\right)'}$$
$$= \frac{\left(1 + \sin 2\theta\right)\cos\theta + 2\cos 2\theta\sin\theta}{-\left(1 + \sin 2\theta\sin\theta\right) + 2\cos 2\theta\cos\theta}$$
$$= \frac{2\sqrt{2}2 + 0}{-2\sqrt{2}/2 + 0}$$
$$= -1$$

3.  $r = 1/\theta, \theta = \pi$ .

$$dy/dx = \frac{(\sin \theta/\theta)'}{(\cos \theta/\theta)'}$$
$$= \frac{(\theta \cos \theta - \sin \theta)/\theta^2}{(-\theta \sin \theta - \cos \theta)/\theta^2}$$
$$= -\pi$$