Quiz 5; Wednesday, February 24
MATH 53 with Professor Stankova
Section 116; 3-4
GSI: Eric Hallman

Student name:

You have 10 minutes to complete the quiz. Calculators are not permitted, and remember to show your calculations and explain your reasoning in order to receive full credit.

1. A ball is dopped from the top of Sather Tower (starting position $\langle 0,0,93.6\rangle$ meters). If the acceleration due to gravity is $\langle 0,0,-9.8\rangle \mathrm{m} / \mathrm{s}^{2}$, find the ball's position as a function of time.

$$
\begin{aligned}
& \mathbf{v}(T)=\int_{0}^{T}\langle 0,0,-9.8\rangle d t=\langle 0,0,-9.8 T\rangle(\text { in } \mathrm{m} / \mathrm{s}) \\
& \mathbf{r}(T)=\int_{0}^{T}\langle 0,0,93.6-9.8 t\rangle d t=\left\langle 0,0,93.6-4.9 T^{2}\right\rangle(\text { in meters })
\end{aligned}
$$

2. Using the formula $\kappa=|d \mathbf{T}| /|d s|$ or $\kappa=\left|\mathbf{T}^{\prime}(t)\right| /\left|\mathbf{r}^{\prime}(t)\right|$, find the curvature of the ball's path as a function of time. Explain your answer.
$\mathbf{T}=\langle 0,0,-1\rangle$ the entire time that the ball is in the air, so $|d \mathbf{T}| /|d s|=0$ at all points in time. This is because the ball falls in a straight line, and straight lines are not curved.
