Quiz 11; Wednesday, April 13
MATH 53 with Professor Stankova
Section 109; 11-12
GSI: Eric Hallman

Student name:

You have 10 minutes to complete the quiz. Calculators are not permitted, and remember to show your calculations and explain your reasoning in order to receive full credit.

1. Evaluate $\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} d V$ where E is the portion of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ lying in the first $\operatorname{octant}(x, y, z \geq 0)$.
The unit ball constraint gives the bounds $0 \leq \rho \leq 1$ and constraining the domain to the first octant is equivalent to the bounds $0 \leq \theta, \phi \leq \pi / 2$. As $x^{2}+y^{2}+z^{2}=\rho^{2}$ and $x=\rho \sin \phi \cos \theta$, the integral becomes

$$
\begin{aligned}
\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} d V & =\int_{\rho=0}^{1} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{\pi / 2}(\rho \sin \phi \cos \theta) e^{\rho^{2}} \rho^{2} \sin \phi d \phi d \theta d \rho \\
& =\left(\int_{\rho=0}^{1} \rho^{3} e^{\rho^{2}} d \rho\right)\left(\int_{\theta=0}^{\pi / 2} \cos \theta d \theta\right)\left(\int_{\phi=0}^{\pi / 2} \sin ^{2} \phi d \phi\right) \\
& =\left(\left[\frac{1}{2} \rho^{2} e^{\rho^{2}}-\frac{1}{2} e^{\rho^{2}}\right]_{0}^{1}\right)\left([\sin \theta]_{0}^{\pi / 2}\right)\left([\theta / 2-\sin (2 \theta) / 4]_{0}^{\pi / 2}\right) \\
& =(1 / 2)(1)(\pi / 4) \\
& =\pi / 8
\end{aligned}
$$

