Quiz 10; Wednesday, April 6
MATH 53 with Professor Stankova
Section 109; 11-12
GSI: Eric Hallman

Student name:

You have 10 minutes to complete the quiz. Calculators are not permitted, and remember to show your calculations and explain your reasoning in order to receive full credit.

1. Use a double integral in polar coordinates to find the volume of a sphere with radius a.

Integrate the function $z=\sqrt{a^{2}-r^{2}}$, making sure to multiply by 2 to count the top and bottom halves of the sphere:

$$
\begin{aligned}
2 \int_{r=0}^{a} \int_{\theta=0}^{2 \pi} r \sqrt{a^{2}-r^{2}} d r d \theta & =4 \pi \int_{r=0}^{a} r \sqrt{a^{2}-r^{2}} d r \\
& =4 \pi\left[-\frac{1}{3}\left(a^{2}-r^{2}\right)^{3 / 2}\right]_{r=0}^{a} \\
& =\frac{4}{3} \pi a^{3}
\end{aligned}
$$

