11.10: Taylor Series Wednesday, March 18

Recap

A certain power series centered at x = 2 converges at -2 and diverges at 7. Decide whether it converges or diverges at each of the following points, or whether you do not have enough information to tell.

 1. x = -4 3. x = 2 5. x = 6

 2. x = -3 4. x = 5 6. x = 8

Power Series

 1. $e^x =$ 4. $\frac{1}{1-x} =$

 2. $\sin x =$ 5. $\ln(1+x) =$

 3. $\cos x =$ 6. $\arctan(x) =$

Power Series Arithmetic

1. $\frac{1}{1+2x} =$	$3. \sin x + 2\cos 2x =$
2. $e^{2x} + \sin(x) =$	4. $(\sin x)^2 =$

- 5. Show that $\frac{d}{dx}\sin x = \cos x$.
- 6. Derive the Taylor series for $\arctan x$ at x = 0 by integrating $\frac{1}{1+x^2}$.
- 7. Show that $\sin 2x = 2 \sin x \cos x$, at least up to the x^3 term in their series expansions.

Taylor Series

Find the Taylor series expansions for the given functions around the given points.

- 1. $\sqrt{3+x}$ around x=0
- 2. \sqrt{x} around x = 3
- 3. $\sin(x)$ around $x = \pi/2$
- 4. e^{2x} around x = 1

Find the Taylor series expansions for the function $f(x) = x^3 - 3x$ at x = 0, x = 1, and x = 2. Sketch the linear and quadratic approximations at each of those points below:

- 1. Are the three full Taylor series expansions the same? If not, how do they differ?
- 2. What do the coefficients of the Taylor series expansions tell you about the behavior of the function (e.g. slope, concavity) at each of the three points?
- 3. Compare the Taylor series expansions for $\sin x$ around x = 0 and $x = 2\pi$. How are these similar? How do they differ?