Sequences

Wednesday, Febrary 18

Review

1. $\ln (a \cdot b)=\ln a+\ln b$
2. $\ln \left(x^{a}\right)=a \ln x$
3. $x^{y}=e^{x \ln y}$
4. $e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\ldots$
5. $(a+b)(a-b)=a^{2}-b^{2}$
6. $\ln (n+1)-\ln (n)=\ln (1+1 / n)$
7. $\sqrt{n^{2}+n}-n=\frac{n}{n+\sqrt{n^{2}+n}}$
8. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Sequences

Write the first four or five terms (starting from $n=0$) of each of the following sequences:

1. $a_{n}=6 \cdot\left(\frac{2}{3}\right)^{n}$

$$
a_{0}=6, a_{1}=4, a_{2}=8 / 3, a_{3}=16 / 9, a_{4}=32 / 27
$$

2. $a_{n}=(-1)^{n} /(2 n+1)$

$$
a_{0}=1, a_{1}=-1 / 3, a_{2}=1 / 5, a_{3}=-1 / 7
$$

3. $a_{n}=n!-3^{n}$

$$
a_{0}=0, a_{1}=-2, a_{2}=-7, a_{3}=-21, a_{4}=-57, a_{5}=-123, a_{6}=-9, a_{7}=2853
$$

Find a formula that produces each of the following sequences (starting from $n=1$):

1. $\{1,-1,1,-1,1, \ldots\}$

$$
a_{n}=(-1)^{n+1}
$$

2. $\{-1,4,-9,16,-25, \ldots\}$

$$
a_{n}=(-1)^{n} / n^{2}
$$

3. $\{4,2,1,1 / 2,1 / 4, \ldots\}$

$$
a_{n}=8 / 2^{n}=2^{3-n}
$$

The Hierarchy of Growth

Order the following sequences from smallest to largest as $n \rightarrow \infty$:

$$
\begin{gathered}
n!, \ln (\ln (n)), 3 n+5,7, n^{0.0001}, 0.8^{n}, e^{n} / 200, n^{n}, \sqrt{n}, \sqrt{9 n^{2}+3 n+2}, \ln (n), 1.01^{n}, n^{100}-2 \\
0.8^{n}, 7, \ln \ln n, \ln n, n^{0.0001}, \sqrt{9 n^{2}+3 n+2} \sim \sqrt{n}, 3 n+5, n^{100}-2,1.01^{n}, e^{n} / 200, n!, n^{n}
\end{gathered}
$$

Determining Convergence of a Sequence

Determine whether each of the following sequences has a limit of 0 or ∞ :

1. $\lim _{n \rightarrow \infty} e^{n} / n!=0$
2. $\lim _{n \rightarrow \infty} n^{2} / \ln (n)=\infty$
3. $\lim _{n \rightarrow \infty} \sqrt{n} / 1.01^{n}=0$
4. $\lim _{n \rightarrow \infty} \ln (n) / \ln (\ln (n))=\infty$
5. $\lim _{n \rightarrow \infty} e^{n} / n^{e}=\infty$
6. $\lim _{n \rightarrow \infty} n^{2} / \sqrt{n^{5}+2}=0$
7. $\lim _{n \rightarrow \infty} \frac{n^{5}+10 \ln (n)}{5 n^{3}+1.01^{n}}=0$
8. $\lim _{n \rightarrow \infty} \frac{3 n+5+\ln \ln n}{n!}=0$
9. $\lim _{n \rightarrow \infty} \frac{1.05^{n}+n^{3}}{1.04^{n}+\sqrt{n}}=\infty$
10. $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{3}+1}(n+1)^{3}}{(n+\ln n)^{3}}=\infty$
11. $\lim _{n \rightarrow \infty} \frac{e^{n}+e^{-n}}{2 n}=\infty$
12. $\lim _{n \rightarrow \infty} \frac{n \ln \ln n}{1+\ln n}=\infty$
13. $\lim _{n \rightarrow \infty} \frac{e^{n} \ln n+\sqrt{n}}{n!}=0$
14. $\lim _{n \rightarrow \infty} \frac{1.01^{n}}{n^{1.01}}=\infty$

Each of the following sequences has a positive finite limit. Find the limit:
(Note: all of these answer come either from mulitplying by the conjugate radical or using L'Hospital's Rule. In the case of $L=\lim _{n \rightarrow \infty}(1+1 / n)^{n}$, use $\ln (L)=\lim _{n \rightarrow \infty} \ln \left((1+1 / n)^{n}\right)=\lim _{n \rightarrow \infty} n \ln (1+1 / n)=1$. This is also a good identity to know offhand.)

1. $\lim _{n \rightarrow \infty} \sqrt{n^{2}+2 n}-n=1$
2. $\lim _{n \rightarrow \infty} \sqrt{n^{2}+5 n+1}-n=5 / 2$
3. $\lim _{n \rightarrow \infty} \sqrt{4 n^{2}+6 n+3}-2 n=3 / 2$
4. $\lim _{n \rightarrow \infty} n \ln (1+1 / n)=\lim _{x \rightarrow 0} \ln (1+x) / x=1$
5. $\lim _{n \rightarrow \infty} n \sin (1 / n)=\lim _{x \rightarrow 0} \sin (x) / x=1$
6. $\lim _{n \rightarrow \infty}(1+1 / n)^{n}=e$
7. $\lim _{n \rightarrow \infty} n(\ln (n+1)-\ln (n))=\lim _{n \rightarrow \infty} n \ln (1+1 / n)=1$
8. $\lim _{n \rightarrow \infty} n \sqrt{n^{2}+1}-n^{2}=1 / 2$
9. $\lim _{n \rightarrow \infty} n\left(e^{1 / n}-1\right)=\lim _{x \rightarrow 0}\left(e^{x}-1\right) / x=1$

True or False?

If true, explain your reasoning. If false, find a counterexample.

1. If $\left\{a_{n}\right\}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. False: $a_{n}=1$
2. If $\left\{a_{n}\right\}$ diverges, then $\lim _{n \rightarrow \infty} a_{n} \neq 0$. True: the limit is $\pm \infty$ or it does not exist.
3. If $\left\{a_{n}\right\}$ converges, then there is an N such that $n \geq N$ implies $\left|a_{n}-a_{n+1}\right|<N$. True: If $\left\{a_{n}\right\}$ converges then $\left|a_{n}-a_{n+1}\right|$ has to become arbitrarily small. If we go by a N-epsilon proof, then we can let $\epsilon=1 / 2$ and the result will follow from ther.
4. If $\left\{a_{n}\right\}$ diverges, then for any $\epsilon>0$ there is an N such that $n \geq N$ implies $\left|\left(\lim _{n \rightarrow \infty} a_{n}\right)-a_{n}\right|>\epsilon$. False: The limit $\lim _{n \rightarrow \infty} a_{n}$ does not exist in the first place.
5. If $\lim _{n \rightarrow \infty} a_{n}=0$ but $\left\{b_{n}\right\}$ diverges, then the sequence $\left\{a_{n} b_{n}\right\}$ diverges. False: We could have $a_{n}=0$ for all n.
6. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both converge, then $\left\{a_{n}+b_{n}\right\}$ converges. True.
7. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both converge, then $\left\{a_{n} b_{n}\right\}$ converges. True.
8. If $\left\{a_{n}\right\}$ converges, then $\lim _{n \rightarrow \infty} a_{n} / n=0$. True.
9. For every $\left\{a_{n}\right\}$ there is some $\left\{b_{n}\right\}$ such that $\left\{a_{n} b_{n}\right\}$ diverges. False, since $a_{n}=0$ serves as a counterexample. If we exclude all sequences that are eventually just a string of zeros, then this statement is true.
10. Every bounded sequence is convergent. False: $a_{n}=(-1)^{n}$.
11. Every bounded convergent sequence is monotonic. False: $a_{n}=(-1)^{n} / n$
12. If f is a function and $\lim _{n \rightarrow \infty} a_{n}=L$, then $f(L)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)$. False: Let $f(x)= \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}$ and let $a_{n}=1 / n$. Then $\lim _{n \rightarrow \infty} a_{n}=0$ and $f(0)=1$, but $f\left(a_{n}\right)=1$ for all n and so $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=$ $1 \neq f\left(\lim _{n \rightarrow \infty} a_{n}\right)$.
13. If f is a continuous function and $\lim _{n \rightarrow \infty} a_{n}=L$, then $f(L)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)$. True. This means that the only counterexamples to the previous statement are discontinuous functions.
14. If $\left\{a_{n}\right\}$ converges, then $\left\{a_{n}^{2}\right\}$ converges.

True by the previous statement, since $f(x)=x^{2}$ is a continuous function.

Bonus

1. Prove that $\lim _{n \rightarrow \infty} \ln (n) / n^{\epsilon}=0$ for any $\epsilon>0$.

Use L'Hospital's Rule:

$$
\lim _{n \rightarrow \infty} \ln (n) / n^{\epsilon}=\lim _{n \rightarrow \infty} \frac{1 / n}{\epsilon n^{\epsilon-1}}=\lim _{n \rightarrow \infty} \frac{1}{\epsilon n^{\epsilon}}=0
$$

2. Prove that $\lim _{n \rightarrow \infty} k^{n} / n!=0$ for any constant $k>0$.

Loose proof: the idea is that k^{n} / n ! will keep growing until $n>k$, and will start shrinking afterwards. Let K be an integer such that $K \geq k$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} k^{n} / n! & \leq \lim _{n \rightarrow \infty} K^{n} / n! \\
& =\frac{K}{1} \frac{K}{2} \frac{K}{3} \cdots \frac{K}{K} \frac{K}{K+1} \frac{K}{K+2} \cdots \\
\lim _{n \rightarrow \infty} k^{n} / n! & \leq K^{K} / K!\cdot \lim _{n \rightarrow \infty}\left(\frac{K}{K+1}\right)^{n} \\
& =0
\end{aligned}
$$

