11.1/11.2: Sequences/Series Review Monday, February 23

Speed Round

1.	$\lim_{n \to \infty} 2^n / n^2$	9.	$\lim_{n \to \infty} \frac{n^2 + 3n + 2}{3n^2 + 2n + 1}$	16.	$\sum_{n=1}^{\infty} \pi^n$
2.	$\lim_{n \to \infty} n / \ln(n)$	10.	$\lim \frac{n+\ln n}{\sqrt{2}}$		n=0 ∞
3.	$\lim_{n \to \infty} e^n / n!$		$n \to \infty \sqrt{n^2} + \ln n$ $1.01^n + n^2$	17.	$\sum_{n=0}^{n} (1/\pi)^n$
4.	$\lim_{n \to \infty} n^{100}/n!$	11.	$\lim_{n \to \infty} \frac{1}{0.95^n + n^5}$	10	$\sum_{n=1}^{\infty} r/2^{n}$
5.	$\lim_{n\to\infty} \ln(n)/\ln(\ln(n))$	12.	$\lim_{n \to \infty} 0.9999^n$	18.	$\sum_{n=0}^{3/2^n}$
6.	$\lim_{n \to \infty} \ln(n) / n^{0.0001}$	13.	$\lim_{n \to \infty} (-1)^n$ $\dots e^n + n$	19.	$\sum_{n=1}^{\infty} (5/2)^n$
7.	$\lim_{n \to \infty} \sin(n)$	14.	$\lim_{n \to \infty} \frac{1}{e^{2n}}$		$n=0$ ∞
8.	$\lim_{n \to \infty} \sin^2(n) + \cos^2(n)$	15.	$\lim_{n \to \infty} \frac{n\sqrt{n+1}}{\sqrt{n^3+1}}$	20.	$\sum_{n=0} 1/n$

Some Computation Required

- 1. $\lim_{n \to \infty} \sqrt{n^2 n} n$ 2. $\lim_{n \to \infty} \sqrt{n^2 + 1} - n$
- 3. $\lim_{n \to \infty} n(\cos(1/n) 1)$

4.
$$\lim_{n \to \infty} n^2 (\cos(1/n) - 1)$$

5. Prove that if $\epsilon > 0$ then $\lim_{n \to \infty} \ln(n)/n^{\epsilon} = 0$.

6.
$$\sum_{n=1}^{\infty} 3^{n+2}/4^n$$

7. $\sum_{n=1}^{\infty} 2^{n-2}/5^{n+1}$

Monotone Convergence Theorem

If $\{a_n\}$ is monotonic and bounded, then $\lim_{n\to\infty} a_n$ exists.

- 1. Draw a picture illustrating the Monotone Convergence Theorem.
- 2. True or False: $a_n = \ln(n)$ is monotonic, so the MTC implies that $\lim_{n\to\infty} a_n$ exists.
- 3. True or False: $s_n = \sum_{i=1}^n 1/i^2$ is monotonic and bounded above by 2, so the MTC implies that $\lim_{n\to\infty} a_n = 2$.
- 4. True of False: $a_n = 1 + 1/n$ is decreasing and bounded above by 2, so the MTC implies that $\lim_{n\to\infty} a_n$ exists.

- 5. If D_n is the world record in the 100-meter dash as of the year n (say, for $n \ge 1900$), what (if anything) does the MTC say about D_n ?
- 6. A North-Going Zax (which only goes north) and a South-Going Zax (which only goes south) are on a collision path. What does the MTC say about the two Zax? Do they necessarily bump into each other?

Back to Polynomials

- 1. For what values of x does $\lim_{n\to\infty} x^n = 0$ hold?
- 2. Sketch the graphs of the functions $f(x) = x^{100}$, $g(x) = x^{101}$, h(x) = 0. When are the first two "good" approximations of the third?
- 3. For what values of x does $\sum_{n=0}^{\infty} x^n = 1/(1-x)$ hold?
- 4. Sketch the graphs of the functions $f(x) = 1 + x + x^2 + \dots + x^{50}$, $g(x) = 1 + x + x^2 + \dots + x^{51}$, h(x) = 1/(1-x). When are the first two "good" approximations of the third?
- 5. For what values of x does $\lim_{n\to\infty} (x/2)^n = 0$ hold?
- 6. For what values of x does $\sum_{n=0}^{\infty} (x/2)^n = 1/(1-x/2)$ hold?
- 7. What is $\sum_{n=0}^{\infty} x^{2n}$, when |x| < 1?