11.1/11.2: Sequences/Series Review
 Monday, February 23

Speed Round

1. $\lim _{n \rightarrow \infty} 2^{n} / n^{2}$
2. $\lim _{n \rightarrow \infty} n / \ln (n)$
3. $\lim _{n \rightarrow \infty} e^{n} / n$!
4. $\lim _{n \rightarrow \infty} n^{100} / n$!
5. $\lim _{n \rightarrow \infty} \ln (n) / \ln (\ln (n))$
6. $\lim _{n \rightarrow \infty} \ln (n) / n^{0.0001}$
7. $\lim _{n \rightarrow \infty} \sin (n)$
8. $\lim _{n \rightarrow \infty} \sin ^{2}(n)+\cos ^{2}(n)$
9. $\lim _{n \rightarrow \infty} \frac{n^{2}+3 n+2}{3 n^{2}+2 n+1}$
10. $\lim _{n \rightarrow \infty} \frac{n+\ln n}{\sqrt{n^{2}+\ln n}}$
11. $\lim _{n \rightarrow \infty} \frac{1.01^{n}+n^{2}}{0.95^{n}+n^{5}}$
12. $\lim _{n \rightarrow \infty} 0.9999^{n}$
13. $\lim _{n \rightarrow \infty}(-1)^{n}$
14. $\lim _{n \rightarrow \infty} \frac{e^{n}+n}{e^{2 n}}$
15. $\lim _{n \rightarrow \infty} \frac{n \sqrt{n+1}}{\sqrt{n^{3}+1}}$
16. $\sum_{n=0}^{\infty} \pi^{n}$
17. $\sum_{n=0}^{\infty}(1 / \pi)^{n}$
18. $\sum_{n=0}^{\infty} 5 / 2^{n}$
19. $\sum_{n=0}^{\infty}(5 / 2)^{n}$
20. $\sum_{n=0}^{\infty} 1 / n$

Some Computation Required

1. $\lim _{n \rightarrow \infty} \sqrt{n^{2}-n}-n$
2. $\lim _{n \rightarrow \infty} \sqrt{n^{2}+1}-n$
3. $\lim _{n \rightarrow \infty} n(\cos (1 / n)-1)$
4. $\lim _{n \rightarrow \infty} n^{2}(\cos (1 / n)-1)$
5. Prove that if $\epsilon>0$ then $\lim _{n \rightarrow \infty} \ln (n) / n^{\epsilon}=0$.
6. $\sum_{n=1}^{\infty} 3^{n+2} / 4^{n}$
7. $\sum_{n=1}^{\infty} 2^{n-2} / 5^{n+1}$

Monotone Convergence Theorem

If $\left\{a_{n}\right\}$ is monotonic and bounded, then $\lim _{n \rightarrow \infty} a_{n}$ exists.

1. Draw a picture illustrating the Monotone Convergence Theorem.
2. True or False: $a_{n}=\ln (n)$ is monotonic, so the MTC implies that $\lim _{n \rightarrow \infty} a_{n}$ exists.
3. True or False: $s_{n}=\sum_{i=1}^{n} 1 / i^{2}$ is monotonic and bounded above by 2 , so the MTC implies that $\lim _{n \rightarrow \infty} a_{n}=2$.
4. True of False: $a_{n}=1+1 / n$ is decreasing and bounded above by 2 , so the MTC implies that $\lim _{n \rightarrow \infty} a_{n}$ exists.
5. If D_{n} is the world record in the 100 -meter dash as of the year n (say, for $n \geq 1900$), what (if anything) does the MTC say about D_{n} ?
6. A North-Going Zax (which only goes north) and a South-Going Zax (which only goes south) are on a collision path. What does the MTC say about the two Zax? Do they necessarily bump into each other?

Back to Polynomials

1. For what values of x does $\lim _{n \rightarrow \infty} x^{n}=0$ hold?
2. Sketch the graphs of the functions $f(x)=x^{100}, g(x)=x^{101}, h(x)=0$. When are the first two "good" approximations of the third?
3. For what values of x does $\sum_{n=0}^{\infty} x^{n}=1 /(1-x)$ hold?
4. Sketch the graphs of the functions $f(x)=1+x+x^{2}+\ldots x^{50}, g(x)=1+x+x^{2}+\ldots+x^{51}, h(x)=1 /(1-x)$. When are the first two "good" approximations of the third?
5. For what values of x does $\lim _{n \rightarrow \infty}(x / 2)^{n}=0$ hold?
6. For what values of x does $\sum_{n=0}^{\infty}(x / 2)^{n}=1 /(1-x / 2)$ hold?
7. What is $\sum_{n=0}^{\infty} x^{2 n}$, when $|x|<1$?
