## 9.3: Separable Equations

Friday, April 10

## Review

1. Show that $y=A e^{2 x}+B e^{-2 x}$ satisfies the differential equation $y^{\prime \prime}=4 y$ for any constants $A, B$.

$$
y^{\prime \prime}=\left(A e^{2 x}+B e^{-2 x}\right)^{\prime \prime}=4 A e^{2 x}+4 B e^{2 x}=4\left(A e^{2 x}+B e^{-2 x}\right)=4 y
$$

2. Show that $y=\ln x$ satisfies the differential equation $y^{\prime}=e^{-y}$.

$$
y^{\prime}=1 / x=1 / e^{\ln x}=e^{-\ln x}=e^{-y}
$$

3. Suppose a particle's velocity is described by $\frac{d x}{d t}=\sin x$. If $x(0)=1$, what will happen to the particle as $t \rightarrow \infty$ ?
The particle will approach $x=\pi$.
4. What if $x(0)=2 \pi$ ? What if $x(0)=-1$ ?

If $x(0)=2 \pi$, the particle will stay still. If $x(0)=-1$, the particle will approach $x=-\pi$.
5. Sketch a direction field for the $\frac{d x}{d t}=\sin x$, including lines where $\frac{d x}{d t}=0$.


## Separable Equations

Find the solution of the differential equation that satisfies the given initial condition.

1. $\frac{d y}{d x}=y, y(0)=2$

$$
\begin{aligned}
\frac{1}{y} d y & =d x \\
\ln y & =x+C \\
y & =e^{x+C} \\
& =k e^{x} \\
& =2 e^{x}
\end{aligned}
$$

The final equality comes from solving $y(0)=2$, the initial condition.
2. $\frac{d y}{d x}=x y, y(0)=1$

$$
\begin{aligned}
\frac{1}{y} d y & =x d x \\
\ln y & =\frac{1}{2} x^{2}+c \\
y & =e^{x^{2} / 2+c} \\
& =k e^{x^{2} / 2} \\
& =e^{x^{2} / 2}
\end{aligned}
$$

The final equality (with $k=1$ ) comes form solving $y(0)=1$.
3. $\frac{d y}{d x}=(1+y) / x, y(1)=3$

$$
\begin{aligned}
\frac{1}{1+y} d y & =\frac{1}{x} d x \\
\ln (1+y) & =\ln x+c \\
1+y & =e^{\ln x+c} \\
y & =-1+k x \\
y & =4 x-1
\end{aligned}
$$

(Note: The problem originally had the initial condition $y(0)=1$, which would have no solutions)
4. $\frac{d y}{d x}=1+x+y+x y, y(0)=-1$

$$
\begin{aligned}
\frac{d y}{d x} & =(1+x)(1+y) \\
\frac{1}{1+y} d y & =(1+x) d x \\
\ln (1+y) & =c+x+x^{2} / 2 \\
y & =-1+e^{c+x+x^{2} / 2}
\end{aligned}
$$

This might appear to have no solutions given $y(0)=-1$, but as it turns out the constant $y=-1$ is itself a solution.
5. $\frac{d y}{d x}=e^{y+x}, y(0)=2$

$$
\begin{aligned}
e^{-y} d y & =e^{x} d x \\
-e^{-y} & =c+e^{x} \\
e^{-y} & =-c-e^{x} \\
y & =-\ln \left(-c-e^{x}\right) \\
y & =-\ln \left(1-1 / e-e^{x}\right)
\end{aligned}
$$

Note that this solution will not be defined for all values of $x$, since $\ln (x)$ is only defined for positive numbers.
6. $\frac{d y}{d x}=y+x, y(0)=0$ (Hint: Substitute $\left.u=y+x\right)$

$$
\begin{aligned}
u & =y+x \\
\frac{d u}{d x} & =\frac{d y}{d x}+1 \\
\frac{d u}{d x} & =1+u \\
\frac{1}{1+u} d u & =d x \\
\ln (1+u) & =x+c \\
1+u & =k e^{x} \\
y & =k e^{x}-x-1
\end{aligned}
$$

## Back to Air Resistance

Say we throw a pillow off a cliff. Acceleration due to gravity is constant, but air resistance is greater the faster the pillow moves. For this reason, we'll model the acceleration on the pillow as

$$
a=\frac{d v}{d t}=-10-v
$$

1. Find an equation for $v(t)$, assuming the initial velocity of the pillow is zero.

$$
\begin{aligned}
\frac{1}{10+v} d v & =-d t \\
\ln (10+v) & =c-t \\
v & =-10+k e^{-t}
\end{aligned}
$$

2. Find an equation for $y(t)$, the height of the pillow over time.

$$
\begin{aligned}
\frac{d y}{d t} & =-10+k e^{-t} \\
d y & =\left(-10+k e^{-t}\right) d t \\
\int_{t=0}^{T} d y & =\int_{t=0}^{T}\left(-10+k e^{-t}\right) d t \\
y-y_{0} & =-10 t+k\left(1-e^{-t}\right) \\
y & =y_{0}-10 t+k\left(1-e^{-t}\right)
\end{aligned}
$$

3. What happens to $v(t)$ and $y(t)$ as $t \rightarrow \infty$ ? Assume the cliff overlooks an infinite abyss.

As $t \rightarrow \infty, v \rightarrow-10$ and $y \rightarrow-\infty \ldots$ the object will eventually fall at a more or less constant rate.

## Melting Snowball

A spherical snowball sits in the hot sun. Since only the surface of the snowball is exposed to the sunlight, assume that the snowball melts at a rate proportional to its surface area. After 1 hour, the snowball is half its original size.

1. Set up a differential equation in terms of volume, surface area, and time.

$$
\frac{d V}{d t}=k A
$$

2. Put the previous equation in terms of time and the radius of the snowball.

$$
\begin{aligned}
\frac{d V}{d r} \frac{d r}{d t} & =k \cdot 4 \pi r^{2} \\
d\left(4 / 3 \pi r^{3}\right) / d r \frac{d r}{d t} & =k \cdot 4 \pi r^{2} \\
4 \pi r^{2} \frac{d r}{d t} & =k \cdot 4 \pi r^{2} \\
\frac{d r}{d t} & =k
\end{aligned}
$$

The snowball's radius decreases at a constant rate!
3. How long does the snowball take to melt entirely?

Since $V \sim r^{3}$, if the volume has been cut in half then that means the radius after one hour is $1 / \sqrt[3]{2}$ the original radius. If the change in radius is constant over time, then the snowball should take $1 /(1-\sqrt[3]{2}) \approx 4.85$ hours to melt.

## Spreading Rumor

Model the rate at which a rumor spreads with $\frac{d P}{d t}=P(1-P)$, where $P$ is the perecentage of people who have heard the rumor.

$$
\begin{aligned}
\frac{1}{P(1-P)} d P & =d t \\
\left(\frac{1}{1-P}+\frac{1}{P}\right) d P & =d t \\
-\ln (1-P)+\ln P & =t+c \\
\ln (P /(1-P)) & =t+c \\
P /(1-P) & =e^{t+c} \\
1 /(1-P)-1 & =k e^{t} \\
1 /(1-P) & =1+k e^{t} \\
1-P & =\frac{1}{1+k e^{t}} \\
P & =1-\frac{1}{1+k e^{t}}
\end{aligned}
$$

1. Solve for $P(t)$ where $P(0)=1 / 10$.

$$
\begin{aligned}
1 / 10 & =1-\frac{1}{1+k e^{t}} \\
\frac{1}{1+k e^{t}} & =9 / 10 \\
1+k e^{0} & =10 / 9 \\
k & =1 / 9 \\
P & =1-\frac{1}{1+e^{t} / 9}
\end{aligned}
$$

2. Check that this equation qualitatively behaves in the manner you would expect (how do you expect it to behave?)
(a) The term $\left(1+e^{t} / 9\right)$ is increasing over time, so $\frac{1}{1+e^{t} / 9}$ is decreasing and therefore $P=1-\frac{1}{1+e^{t} / 9}$ is strictly increasing over time.
(b) As $t \rightarrow \infty, P$ approaches 1 .
(c) $\mathrm{P} \leq 1$ for all time.
