11.8-11.9: Review
 Monday, March 16

Intervals of Convergence

Find the interval of convergence of each of the following series:

1. $\sum_{n=1}^{\infty} n!x^{n}$
2. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{2}}$
3. $\sum_{n=1}^{\infty} \frac{(3 x+1)^{n}}{n}$
4. $\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n} \sqrt{n}}$
5. $\sum_{n=1}^{\infty} \frac{(x+5)^{n}}{n!}$
6. $\sum_{n=1}^{\infty} \frac{2^{n}(x-2)^{n}}{3^{n}}$
7. $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n^{2}}$
8. $\sum_{n=1}^{\infty} \frac{(5-4 x)^{n}}{n}$
9. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{2^{n} \sqrt{n}}$

Find functions with the following intervals of convergence:

1. $[-1,1]$
2. $[-1,1)$
3. $(-1,1)$
4. $(-1,1]$
5. $(3,5)$
6. $[-1,6]$
7. $[2,4)$
8. $\{1\}$
9. $(-\infty, \infty)$

A certain power series converges at $x=-1$ and diverges at $x=5$. For each of the following values of a, decide whether it is possible for the power series to be centered at $x=a$:

1. $a=-3$
2. $a=-1$
3. $a=1$
4. $a=2$
5. $a=3$
6. $a=7$

Power Series

Write the first few terms of each of the following series (centered at $x=0$). Write them in sigma notation. What are their intervals of convergence?

1. $e^{x}=$
2. $\sin x=$
3. $\cos x=$
4. $\arctan x=$
5. $\frac{1}{1-x}=$
6. $\ln (1+x)=$
7. $e^{2 x}=$
8. $\frac{1}{1+x}=$
9. $\cos (-x)=$
10. $\sin (2 x)=$
11. $\frac{1}{1+x^{2}}=$
12. $\sin ^{2}(x)=$

Verify the following identities:

1. $\int \sin (2 x) d x=\frac{-1}{2} \cos (2 x)$
2. $\ln \left(1-x^{2}\right)=\ln (1+x)+\ln (1-x)$
3. $\frac{d}{d x} \frac{1}{1-x}=\left(\frac{1}{1-x}\right)^{2}$

Conceptual

1. The Taylor series for $\frac{1}{1-x}$ centered at $x=0$ is $1+x+x^{2}+x^{3}+\ldots$ What is the value of the function at $x=-1 / 2 ? x=2 ? x=1 ?$ Can we use the power series to evaluate the function at these points?
2. The Taylor series for $\sin (x)$ at $x=0$ is $x-x^{3} / 3!+x^{5} / 5!-\ldots$ Can we use this series to find $\sin (10000)$? Is this a good idea? Come up with another way to estimate $\sin (10000)$.
3. The Taylor series for $\tan (x)$ at $x=0$ is fairly complicated. What do you think its interval of convergence will be? Why?
4. What if we center the Taylor series for $\tan (x)$ at $x=1$?
