11.8-11.9: Review

Monday, March 16

Intervals of Convergence

Find the interval of convergence of each of the following series:

$$1. \sum_{n=1}^{\infty} n! x^n$$

$$4. \sum_{n=1}^{\infty} \frac{x^n}{5^n \sqrt{n}}$$

7.
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n^2}$$

2.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2}$$

$$5. \sum_{n=1}^{\infty} \frac{(x+5)^n}{n!}$$

8.
$$\sum_{n=1}^{\infty} \frac{(5-4x)^n}{n}$$

3.
$$\sum_{n=1}^{\infty} \frac{(3x+1)^n}{n}$$

6.
$$\sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{3^n}$$

9.
$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{2^n \sqrt{n}}$$

Find functions with the following intervals of convergence:

1.
$$[-1,1]$$

4.
$$(-1,1]$$

7.
$$[2,4)$$

$$2. [-1,1)$$

$$3. (-1,1)$$

6.
$$[-1, 6]$$

9.
$$(-\infty, \infty)$$

A certain power series converges at x = -1 and diverges at x = 5. For each of the following values of a, decide whether it is possible for the power series to be centered at x = a:

1.
$$a = -3$$

3.
$$a = 1$$

5.
$$a = 3$$

2.
$$a = -1$$

4.
$$a = 2$$

6.
$$a = 7$$

Power Series

Write the first few terms of each of the following series (centered at x = 0). Write them in sigma notation. What are their intervals of convergence?

1.
$$e^x =$$

7.
$$e^{2x} =$$

$$2. \sin x =$$

8.
$$\frac{1}{1+x} =$$

$$3. \cos x =$$

9.
$$\cos(-x) =$$

4.
$$\arctan x =$$

10.
$$\sin(2x) =$$

5.
$$\frac{1}{1-x} =$$

11.
$$\frac{1}{1+x^2} =$$

6.
$$\ln(1+x) =$$

12.
$$\sin^2(x) =$$

Verify the following identities:

1.
$$\int \sin(2x) \, dx = \frac{-1}{2} \cos(2x)$$

2.
$$\ln(1-x^2) = \ln(1+x) + \ln(1-x)$$

3.
$$\frac{d}{dx} \frac{1}{1-x} = \left(\frac{1}{1-x}\right)^2$$

Conceptual

1. The Taylor series for $\frac{1}{1-x}$ centered at x=0 is $1+x+x^2+x^3+\ldots$ What is the value of the function at x=-1/2? x=2? Can we use the power series to evaluate the function at these points?

2. The Taylor series for $\sin(x)$ at x = 0 is $x - x^3/3! + x^5/5! - \dots$ Can we use this series to find $\sin(10000)$? Is this a good idea? Come up with another way to estimate $\sin(10000)$.

3. The Taylor series for tan(x) at x = 0 is fairly complicated. What do you think its interval of convergence will be? Why?

4. What if we center the Taylor series for tan(x) at x = 1?