# 11.8-11.9: Review <br> Monday, March 16 

## Intervals of Convergence

Find the interval of convergence of each of the following series:

1. $\sum_{n=1}^{\infty} n!x^{n}:\{0\}$
2. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{2}}:[1,3]$
3. $\sum_{n=1}^{\infty} \frac{(3 x+1)^{n}}{n}:[-2 / 3,0)$
4. $\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n} \sqrt{n}}:[-5,5)$
5. $\sum_{n=1}^{\infty} \frac{(x+5)^{n}}{n!}:(-\infty, \infty)$
6. $\sum_{n=1}^{\infty} \frac{2^{n}(x-2)^{n}}{3^{n}}:(1 / 2,7 / 2)$
7. $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n^{2}}:[-2,0]$
8. $\sum_{n=1}^{\infty} \frac{(5-4 x)^{n}}{n}:(2,3 / 2]$
9. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{2^{n} \sqrt{n}}:[1,5)$

Find functions with the following intervals of convergence:

1. $[-1,1]: \sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
2. $[-1,1): \sum_{n=1}^{\infty} \frac{x^{n}}{n}$
3. $(-1,1): \sum_{n=1}^{\infty} x^{n}$
4. $(-1,1]: \sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n^{2}}$
5. $(3,5): \sum_{n=1}^{\infty}(x-4)^{n}$
6. $[-1,6]: \sum_{n=1}^{\infty} \frac{2^{n}(x-5 / 2)^{n}}{n^{2} \cdot 7^{n}}$
7. $[2,4): \sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$
8. $\{1\}: \sum_{n=1}^{\infty} n!(x-1)^{n}$
9. $(-\infty, \infty): \sum_{n=1}^{\infty} \frac{x^{n}}{n!}$

A certain power series converges at $x=-1$ and diverges at $x=5$. For each of the following values of $a$, decide whether it is possible for the power series to be centered at $x=a$ :

1. $a=-3$ yes
2. $a=1$ yes
3. $a=3$ no
4. $a=-1$ yes
5. $a=2$ yes (this is the largest possible value for the center) 6. $a=7$ no

## Power Series

Write the first few terms of each of the following series (centered at $x=0$ ). Write them in sigma notation. What are their intervals of convergence?

1. $e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+\ldots$ IOC $=(-\infty, \infty)$
2. $\sin x=x-x^{3} / 3!+x^{5} / 5!-\ldots \mathrm{IOC}=(-\infty, \infty)$
3. $\cos x=1-x^{2} / 2!+x^{4} / 4!-\ldots \mathrm{IOC}=(-\infty, \infty)$
4. $\arctan x=x-x^{3} / 3+x^{5} / 5-\ldots$ IOC $=[-1,1]$
5. $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \mathrm{IOC}=(-1,1)$
6. $\ln (1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4+\ldots$ IOC $=(-1,1]$
7. $e^{2 x}=1+(2 x)+(2 x)^{2} / 2!+(2 x)^{3} / 3!+\ldots$ IOC $=(-\infty, \infty)$
8. $\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-\ldots$ IOC $=(-1,1)$
9. $\cos (-x)=1-x^{2} / 2!+x^{4} / 4!-\ldots$ IOC $=(-\infty, \infty)$
10. $\sin (2 x)=2 x-(2 x)^{3} / 3!+(2 x)^{5} / 5!-\ldots$ IOC $=(-\infty, \infty)$
11. $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots$ IOC $=(-1,1)$
12. $\sin ^{2}(x)=x^{2}-x^{4} / 3+2 x^{6} / 45-\ldots$ IOC $=(-\infty, \infty)$

Verify the following identities:

1. $\int \sin (2 x) d x=\frac{-1}{2} \cos (2 x)$
2. $\ln \left(1-x^{2}\right)=\ln (1+x)+\ln (1-x)$
3. $\frac{d}{d x} \frac{1}{1-x}=\left(\frac{1}{1-x}\right)^{2}$

## Conceptual

1. The Taylor series for $\frac{1}{1-x}$ centered at $x=0$ is $1+x+x^{2}+x^{3}+\ldots$ What is the value of the function at $x=-1 / 2 ? x=2 ? x=1 ?$ Can we use the power series to evaluate the function at these points?
2. The Taylor series for $\sin (x)$ at $x=0$ is $x-x^{3} / 3!+x^{5} / 5!-\ldots$ Can we use this series to find $\sin (10000)$ ? Is this a good idea? Come up with another way to estimate $\sin (10000)$.
3. The Taylor series for $\tan (x)$ at $x=0$ is fairly complicated. What do you think its interval of convergence will be? Why?
4. What if we center the Taylor series for $\tan (x)$ at $x=1$ ?
