11.8-11.9: Review Monday, March 16

Intervals of Convergence

Find the interval of convergence of each of the following series:

1.
$$\sum_{n=1}^{\infty} n! x^{n}$$
: $\{0\}$
2.
$$\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{2}}$$
: $[1,3]$
3.
$$\sum_{n=1}^{\infty} \frac{(3x+1)^{n}}{n}$$
: $[-2/3,0)$
4.
$$\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n}\sqrt{n}}$$
: $[-5,5)$
5.
$$\sum_{n=1}^{\infty} \frac{(x+5)^{n}}{n!}$$
: $(-\infty,\infty)$
6.
$$\sum_{n=1}^{\infty} \frac{2^{n}(x-2)^{n}}{3^{n}}$$
: $(1/2,7/2)$
7.
$$\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n^{2}}$$
: $[-2,0]$
8.
$$\sum_{n=1}^{\infty} \frac{(5-4x)^{n}}{n}$$
: $(2,3/2]$
9.
$$\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{2^{n}\sqrt{n}}$$
: $[1,5)$

Find functions with the following intervals of convergence:

1. [-1,1]: $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ 2. [-1,1]: $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ 3. (-1,1]: $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 4. (-1,1]: $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$ 5. (3,5): $\sum_{n=1}^{\infty} (x-4)^n$ 6. [-1,6]: $\sum_{n=1}^{\infty} \frac{2^n (x-5/2)^n}{n^{2} \cdot 7^n}$ 7. [2,4]: $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ 8. $\{1\}$: $\sum_{n=1}^{\infty} n! (x-1)^n$ 9. $(-\infty,\infty)$: $\sum_{n=1}^{\infty} \frac{x^n}{n!}$

A certain power series converges at x = -1 and diverges at x = 5. For each of the following values of a, decide whether it is possible for the power series to be centered at x = a:

1. a = -3 yes3. a = 1 yes5. a = 3 no2. a = -1 yes4. a = 2 yes (this is the largest
possible value for the center)6. a = 7 no

Power Series

Write the first few terms of each of the following series (centered at x = 0). Write them in sigma notation. What are their intervals of convergence?

1.
$$e^x = 1 + x + x^2/2! + x^3/3! + \dots$$
 IOC = $(-\infty, \infty)$
2. $\sin x = x - x^3/3! + x^5/5! - \dots$ IOC = $(-\infty, \infty)$
3. $\cos x = 1 - x^2/2! + x^4/4! - \dots$ IOC = $(-\infty, \infty)$
4. $\arctan x = x - x^3/3 + x^5/5 - \dots$ IOC = $[-1, 1]$
5. $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$ IOC = $(-1, 1)$
6. $\ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + \dots$ IOC = $(-1, 1]$
7. $e^{2x} = 1 + (2x) + (2x)^2/2! + (2x)^3/3! + \dots$ IOC = $(-\infty, \infty)$
8. $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots$ IOC = $(-1, 1)$
9. $\cos(-x) = 1 - x^2/2! + x^4/4! - \dots$ IOC = $(-\infty, \infty)$

10.
$$\sin(2x) = 2x - (2x)^3/3! + (2x)^5/5! - \dots$$
 IOC = $(-\infty, \infty)$
11. $\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots$ IOC = $(-1, 1)$
12. $\sin^2(x) = x^2 - x^4/3 + 2x^6/45 - \dots$ IOC = $(-\infty, \infty)$

Verify the following identities:

1.
$$\int \sin(2x) \, dx = \frac{-1}{2} \cos(2x)$$

2.
$$\ln(1 - x^2) = \ln(1 + x) + \ln(1 - x)$$

3.
$$\frac{d}{dx} \frac{1}{1 - x} = \left(\frac{1}{1 - x}\right)^2$$

Conceptual

1. The Taylor series for $\frac{1}{1-x}$ centered at x = 0 is $1 + x + x^2 + x^3 + \dots$ What is the value of the function at x = -1/2? x = 2? x = 1? Can we use the power series to evaluate the function at these points?

2. The Taylor series for sin(x) at x = 0 is $x - x^3/3! + x^5/5! - ...$ Can we use this series to find sin(10000)? Is this a good idea? Come up with another way to estimate sin(10000).

3. The Taylor series for tan(x) at x = 0 is fairly complicated. What do you think its interval of convergence will be? Why?

4. What if we center the Taylor series for tan(x) at x = 1?