Math 1B, Quiz 7

Monday, March 16

1. (1 pt each) Give power series representations for the following functions (centered at $x=0$) up and including the x^{3} term.
(a) $e^{2 x}=1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\ldots$
(b) $\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots$
2. (3 pts) A power series centered at $x=5$ converges at $x=2$ and diverges at $x=10$. For each of the following points state whether the series converges or diverges at that point, or whether there is not enough information to tell.
(a) $x=-1$ diverges
(d) $x=8$ unknown
(b) $x=1$ unknown
(e) $x=9$ unknown
(c) $x=7$ converges
(f) $x=11$ diverges
3. (3 pts) Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{2} \cdot 3^{n}}$. Show your work.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \frac{|x-2|}{3} \\
& =\frac{|x-2|}{3}
\end{aligned}
$$

So the series converges when $|x-2| / 3<1$, meaning $|x-2|<3$ and so $-1<x<5$. Checking the endpoints gives the two series $\sum_{n=1}^{\infty} \frac{(\pm 1)^{n}}{n^{2}}$, both of which converge absolutely. The interval of convergence is therefore $[-1,5]$.
Shortcut: The interval of convergence has center $x=2$ and radius 3 , and converges at both endpoints because $\sum_{n=1}^{\infty} 1 / n^{2}$ converges absolutely.
4. (3 pts) Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(3-2 x)^{n}}{n}$. Show your work.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{n+1}{n}|3-2 x| \\
& =|3-2 x|
\end{aligned}
$$

So the series converges when

$$
\begin{aligned}
|3-2 x| & <1 \\
-1 & <3-2 x<1 \\
-4 & <-2 x<-2 \\
1 & <x<2
\end{aligned}
$$

When $x=2$ the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ and so converges. When $x=1$ the series becomes $\sum_{n=1}^{\infty} \frac{1}{n}$ and so diverges. The interval of convergence is therefore (1,2].
Note: Re-writing the series as $\frac{1}{n} 2^{n}\left(\frac{3}{2}-x\right)^{n}$ allows for the shortcut observation that the interval has center $3 / 2$ and radius $1 / 2$. Since the non-exponential part is $1 / n$, it should converge on one edge only.

Extra Credit

Give as many terms as you can of the Taylor series for $\cos ^{2}(x)+\sin ^{2}(x)$ centered at $x=0$ (0.1 pt per term, max. 0.5 pts).
Answer: 1

