Math 1B, Quiz 6: Solutions

Monday, March 9

- 1. TRUE OR FALSE (2 pts each). You DO NOT have to show your reasoning if the answer is true. If the answer is false, provide a counterexample (if appropriate).
 - (a) If $\sum a_n$ is absolutely convergent then $\sum a_n \cos(n)$ is absolutely convergent. True, since $|a_n \cos(n)| \leq |a_n|$, and since $\sum |a_n|$ converges the comparison test implies that $\sum |a_n \cos n|$ also converges. Since the series is absolutely convergent, it is convergent.
 - (b) If $a_n > b_n > 0$ and $\sum a_n$ is divergent then $\sum b_n$ is divergent. False: $a_n = 1, b_n = 1/n^2$.
 - (c) The Ratio Test can be used to show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ is convergent.

False: Applying the Ratio Test to this series will yield 1, which is inconclusive.

- 2. (2 pts each) Identify each of the following series as absolutely convergent, conditionally convergent, or divergent. You must justify your answers.
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

 $|a_n|=1/\sqrt{n}$ so the series is not absolutely convergent.

The series is alternating, $\frac{1}{\sqrt{n}}$ is a decreasing function, and $\lim_{n\to\infty} 1/\sqrt{n} = 0$, so by the Alternating Series test the series is conditionally convergent.

(b) $\sum_{n=1}^{\infty} \left(\frac{n+3}{2n+4}\right)^n$

 $\lim_{n\to\infty} a_n^{1/n} = \lim_{n\to\infty} \frac{n+3}{2n+4} = 1/2$, so by the Root test the series is absolutely convergent.

(c)
$$\sum_{n=1}^{\infty} \frac{50^n}{n!}$$

 $\lim_{n\to\infty} |a_{n+1}|/|a_n| = \lim_{n\to\infty} \frac{50^{n+1}}{(n+1)!} \frac{n!}{50^n} = \lim_{n\to\infty} \frac{50}{n+1} = 0$, so by the Ratio test the series is absolutely convergent.

Extra Credit

Write $e^{0.06}$ in decimal form as accurately as you can $(\sum_{i=1}^{n} \frac{1}{5i}$ pts for n decimal places). $e^{0.06} \approx 1.06183654654535962222...$