Math 1B, Quiz 5

Monday, March 2

1. (1 pt each) Decide whether each of the following **series** is convergent or divergent. You DO NOT have to show your work.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(d) $\sum_{n=1}^{\infty} \frac{3+5^n}{n^2+7^n}$
(e) $\sum_{n=1}^{\infty} \frac{\ln(n+1) + \sqrt{n^3+4}}{n^2+5\sin(n^2)}$
(f) $\sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+\pi}$

- 2. TRUE OR FALSE (2 pts each). You DO NOT have to show your reasoning if the answer is true. If the answer is false, provide a counterexample.
 - (a) If a_n, b_n are sequences with positive terms and $\lim_{n\to\infty} a_n/b_n = 0$ then $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) If $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ is convergent then $\sum_{n=1}^{\infty} a_n^2$ is convergent.
- 3. (3 pts) Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.3}}$ converges or diverges. Show all of your work.

Extra Credit

Write the fraction $\frac{100}{97}$ in decimal form to as many decimal places as you can (hint: put it in the form $\frac{1}{1-x}$). $(\frac{1}{4n}$ pts for the *n*-th digit)