Math 1B, Quiz 5

Monday, March 2

1. (1 pt each) Decide whether each of the following **series** is convergent or divergent. You DO NOT have to show your work.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges}$$
(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges}$$
(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \text{ diverges}$$
(d)
$$\sum_{n=1}^{\infty} \frac{3+5^n}{n^2+7^n} \text{ converges}$$
(e)
$$\sum_{n=1}^{\infty} \frac{\ln(n+1) + \sqrt{n^3+4}}{n^2+5\sin(n^2)} \text{ diverges}$$
(f)
$$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+\pi} \text{ converges}$$

- 2. TRUE OR FALSE (2 pts each). You DO NOT have to show your reasoning if the answer is true. If the answer is false, provide a counterexample.
 - (a) If a_n, b_n are sequences with positive terms and $\lim_{n\to\infty} a_n/b_n = 0$ then $\sum_{n=1}^{\infty} a_n$ converges. False: $b_n = 1, a_n = 1/n$. If we also have the condition that $\sum_{n=1}^{\infty} b_n$ converges, then the statement is true.
 - (b) If $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ is convergent then $\sum_{n=1}^{\infty} a_n^2$ is convergent. True by the Limit Comparison Test, since $\lim_{n\to\infty} a_n^2/a_n = \lim_{n\to\infty} a_n = 0$.
- 3. (3 pts) Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.3}}$ converges or diverges. Show all of your work.

Compare to $\sum_{n=1}^{\infty} 1/n^{1.1}$:

$$\lim_{n \to \infty} \frac{\ln n}{n^{1.3}} (n^{1.1}) = \lim_{n \to \infty} \frac{\ln n}{n^{0.2}} = 0$$

The last equality can be proved with L'Hospital's rule, but you did not need to say so to get credit. Then since $\sum_{n=1}^{\infty} 1/n^{1.1}$ converges (by the Integral Test), $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges by the Limit Comparison Test.

Extra Credit

Write the fraction $\frac{100}{97}$ in decimal form to as many decimal places as you can (hint: put it in the form $\frac{1}{1-x}$). ($\frac{1}{4n}$ pts for the *n*-th digit) Re-write as $\frac{1}{1-\frac{3}{100}} = 1+3/100+(3/100)^2+\ldots = 1+.03+.0009+.000027+\ldots = 1.03092783505154639175257731958762886597$