Math 1B, Quiz 5

Monday, March 2

1. (1 pt each) Decide whether each of the following series is convergent or divergent. You DO NOT have to show your work.
(a) $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges
(d) $\sum_{n=1}^{\infty} \frac{3+5^{n}}{n^{2}+7^{n}}$ converges
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges
(e) $\sum_{n=1}^{\infty} \frac{\ln (n+1)+\sqrt{n^{3}+4}}{n^{2}+5 \sin \left(n^{2}\right)}$ diverges
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges
(f) $\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+\pi}$ converges
2. TRUE OR FALSE (2 pts each). You DO NOT have to show your reasoning if the answer is true. If the answer is false, provide a counterexample.
(a) If a_{n}, b_{n} are sequences with positive terms and $\lim _{n \rightarrow \infty} a_{n} / b_{n}=0$ then $\sum_{n=1}^{\infty} a_{n}$ converges. False: $b_{n}=1, a_{n}=1 / n$. If we also have the condition that $\sum_{n=1}^{\infty} b_{n}$ converges, then the statement is true.
(b) If $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent then $\sum_{n=1}^{\infty} a_{n}^{2}$ is convergent.

True by the Limit Comparison Test, since $\lim _{n \rightarrow \infty} a_{n}^{2} / a_{n}=\lim _{n \rightarrow \infty} a_{n}=0$.
3. (3 pts) Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.3}}$ converges or diverges. Show all of your work.

Compare to $\sum_{n=1}^{\infty} 1 / n^{1.1}$:

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1.3}}\left(n^{1.1}\right)=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{0.2}}=0
$$

The last equality can be proved with L'Hospital's rule, but you did not need to say so to get credit. Then since $\sum_{n=1}^{\infty} 1 / n^{1.1}$ converges (by the Integral Test), $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges by the Limit Comparison Test.

Extra Credit

Write the fraction $\frac{100}{97}$ in decimal form to as many decimal places as you can (hint: put it in the form $\frac{1}{1-x}$).
($\frac{1}{4 n} \mathrm{pts}$ for the n-th digit)
Re-write as $\frac{1}{1-\frac{3}{100}}=1+3 / 100+(3 / 100)^{2}+\ldots=1+.03+.0009+.000027+\ldots=1.03092783505154639175257731958762886597$

