Math 1B, Quiz 4

Monday, February 23

1. (1 pt each) Decide whether each of the following sequences is convergent or divergent. If the sequence is convergent, find the limit.
(a) $\lim _{n \rightarrow \infty} \frac{25^{n}}{n!}=0$
(d) $\lim _{n \rightarrow \infty} \sin n$ DIVERGES
(b) $\lim _{n \rightarrow \infty} \frac{1 \cdot 1^{n}}{n^{1.1}}=\infty$
(e) $\lim _{n \rightarrow \infty} \frac{(\ln n)^{3}}{n^{1 / 3}}=0$
(c) $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$
(f) $\lim _{n \rightarrow \infty} \frac{n^{2}+\ln n}{3 n^{2}+2 n+\sqrt{n}}=1 / 3$
2. (3 pts) Find the limit of the sequence $\lim _{n \rightarrow \infty} \sqrt{n^{2}+3 n+1}-n$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt{n^{2}+3 n+1}-n & =\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+3 n+1}-n\right) \frac{\sqrt{n^{2}+3 n+1}+n}{\sqrt{n^{2}+3 n+1}+n} \\
& =\lim _{n \rightarrow \infty} \frac{3 n+1}{n+\sqrt{n^{2}+3 n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{3+1 / n}{1+\sqrt{1+3 / n+1 / n^{2}}} \\
& =3 / 2
\end{aligned}
$$

3. $(3 \mathrm{pts})$ Find the sum of the series $\sum_{n=1}^{\infty} \frac{5}{7^{n}}$.

$$
\sum_{n=1}^{\infty} \frac{5}{7^{n}}=\frac{5}{7} \sum_{n=1}^{\infty}(1 / 7)^{n-1}=\frac{5}{7}\left(\frac{1}{1-1 / 7}\right)=5 / 6
$$

Extra Credit

Mark all statements as true or false (0.1 pt each). Answers will be judged based on their consistency with your other answers rather than according to a theoretical "correct" solution.

1. The sum of the numbers of the true statements is equal to the sum of the numbers of the false statements. False
2. All prime-numbered statements are true. False
3. The product of the numbers of the false statements is 10 . True
4. The sum of the numbers of the true statements is prime. True
5. All even-numbered statements are false. False
