Math 1B, Quiz 2

Monday, February 2

Name:

1. $(3 \mathrm{pts})$ Evaluate the integral $\int \frac{x^{2}+3}{(x-1)^{2}} d x$.

Since the degree of the polynomial in the numerator is the same as the degree of the one in the denominator, we first have to carry out long division:

$$
\int \frac{x^{2}+3}{(x-1)^{2}} d x=\int 1+\frac{2 x+2}{(x-1)^{2}} d x
$$

We could keep doing polynomial division from here, or we could use partial fractions to break down the function further:

$$
\begin{aligned}
\frac{2 x+2}{(x-1)^{2}} & =\frac{A}{x-1}+\frac{B}{(x-1)^{2}} \\
\frac{2 x+2}{(x-1)^{2}} & =\frac{A(x-1)}{(x-1)^{2}}+\frac{B}{(x-1)^{2}} \\
2 x+2 & =A(x-1)+B
\end{aligned}
$$

Solving from here gives $A=2, B=4$. Therefore

$$
\begin{aligned}
\int \frac{x^{2}+3}{(x-1)^{2}} d x & =\int 1+\frac{2}{x-1}+\frac{4}{(x-1)^{2}} d x \\
& =x+2 \ln (x-1)-\frac{4}{x-1}
\end{aligned}
$$

2. $(3 \mathrm{pts})$ Evaluate the integral $\int \frac{x+1}{x\left(x^{2}+1\right)} d x$.

$$
\begin{aligned}
\frac{x+1}{x\left(x^{2}+1\right)} & =\frac{A}{x}+\frac{B x+C}{x^{2}+1} \\
x+1 & =A\left(x^{2}+1\right)+(B x+C) x
\end{aligned}
$$

Solving gives $A=1, B=-1, C=1$, so

$$
\begin{aligned}
\int \frac{x+1}{x\left(x^{2}+1\right)} d x & =\int \frac{1}{x}-\frac{x}{x^{2}+1}+\frac{1}{1+x^{2}} d x \\
& =\ln (x)-\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan (x)+C
\end{aligned}
$$

3. (4 pts) Evaluate the integral $\int \frac{1}{\left(1-x^{2}\right)^{3 / 2}} d x$.

Substitute $x=\sin \theta, d x=\cos \theta d \theta$ to get

$$
\begin{aligned}
\int \frac{1}{\left(1-x^{2}\right)^{3 / 2}} d x & =\frac{1}{\left(1-\sin ^{2}(\theta)\right)^{3 / 2}} \cos \theta d \theta \\
& =\int \frac{1}{\cos ^{3} \theta} \cos \theta d \theta \\
& =\int \frac{1}{\cos ^{2} \theta} d \theta \\
& =\int \sec ^{2} \theta d \theta \\
& =\tan (\theta) \\
& =\tan (\arcsin (x)) d x \\
& =\frac{x}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

Extra Credit

Mark all statements as true or false (0.1 pt each). Answers will be judged based on their consistency with your other answers rather than according to a theoretical "correct" solution.

1. Exactly one of these statements is false. False
2. Exactly two of these statements are false. True
3. All three of these statements are false. False
