Math 1B: The Ultimate Quiz

Monday, April 27

1. (4 pts) Find the unique solution to the differential equation $x y^{\prime}=y+x^{2} \sin x$ given the condition $y(\pi)=0$.

$$
\begin{aligned}
x y^{\prime} & =y+x^{2} \sin x \\
y^{\prime}-y / x & =x \sin x \\
I & =e^{\int-1 / x} \\
& =e^{-\ln x} \\
& =1 / x \\
y^{\prime} / x-y / x^{2} & =\sin x \\
(y / x)^{\prime} & =\sin x \\
y / x & =-\cos x+C \\
y & =C x-x \cos x \\
0 & =C \pi+\pi \\
C & =-1 \\
y & =-x-x \cos x
\end{aligned}
$$

2. (6 pts) Find the unique solution to the differential equation $y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} / x^{3}$ given the conditions $y(1)=4 e$ and $y(2)=\frac{9}{2} e^{2}$.
(a) First get two solutions to the homogeneous equation: $y_{1}=e^{x}, y_{2}=x e^{x}$.
(b) $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=e^{2 x}$.
(c)

$$
\begin{aligned}
y & =-y_{1} \int \frac{G y_{2}}{a W}+y_{2} \int \frac{G y_{1}}{a W} \\
& =-e^{x} \int \frac{2 e^{x} x e^{x}}{x^{3} e^{2 x}}+x e^{x} \int \frac{2 e^{x} e^{x}}{x^{3} e^{2 x}} \\
& =-e^{x} \int \frac{2}{x^{2}}+x e^{x} \int \frac{2}{x^{3}} \\
& =-e^{x}\left(-2 / x+C_{1}\right)+x e^{x}\left(-1 / x^{2}+C_{2}\right) \\
& =C_{1} e^{x}+C_{2} x e^{x}+2 e^{x} / x-e^{x} / x \\
& =C_{1} e^{x}+C_{2} x e^{x}+e^{x} / x
\end{aligned}
$$

The boundary conditions then give

$$
\begin{aligned}
C_{1} e+C_{2} e+e & =4 e \\
C_{1}+C_{2} & =3 \\
C_{1} e^{2}+2 C_{2} e^{2}+e^{2} / 2 & =\frac{9}{2} e^{2} \\
C_{1}+2 C_{2} & =4 \\
C_{2} & =1 \\
C_{1} & =2
\end{aligned}
$$

The solution is therefore $y=2 e^{x}+x e^{x}+e^{x} / x$.

