Math 1B, Quiz 10

Monday, April 20

Terminal Velocity, Revisited

Say we throw a math textbook from the top of the Campanile. Let g be the (downward) accleration due to gravity and let v_{f} be the terminal velocity of the book. One potential model for the forces acting on the book is $a=\frac{d v}{d t}=g-\frac{g}{v_{f}} v$, where v is the velocity of the book. Since $v=\frac{d y}{d t}$, we can express the previous equation in terms of y :

$$
y^{\prime \prime}+\frac{g}{v_{f}} y^{\prime}=g
$$

1. (3 pts) Use the method of undetermined coefficients to find a solution y_{p} for y.
2. (1 pt) Describe in words what your particular solution y_{p} says about the path of the book. Was it thrown downward, thrown upward, or dropped?
3. (3 pts) Find the general solution to the complementary equation $y^{\prime \prime}+\frac{g}{v_{f}} y^{\prime}=0$ by solving the auxiliary equation.
4. (1 pt) Find the general solution to the original nonhomogeneous equation.
5. (2 pts) If the book was dropped (with zero initial velocity) from 93 m up, find the unique solution that models the position of the book over time. Your answer should be in terms of v_{f} and g.

Extra Credit

(1 gold star) Each answer will be graded based on its consistency with your other answers rather than according to a theoretical "correct" solution.

1. What is the probability that you will answer both of these questions correctly by guessing randomly?
(a) $1 / 16$
(b) $1 / 8$
(c) $1 / 8$
(d) $1 / 4$
2. What is the probability that you will answer both of these questions incorrectly by guessing randomly?
(a) $1 / 4$
(b) $3 / 8$
(c) $9 / 16$
(d) $9 / 16$
