Partial Fractions

Friday, January 30

Long Division

Simplify the following expressions:

1. $\frac{x^{3}+2 x^{2}+x+1}{x^{2}}$
2. $\frac{x^{2}+x+1}{x(x-2)}$

Answer: $x+2+\frac{1}{x}+\frac{1}{x^{2}}$
Answer: $1+\frac{3 x+1}{x^{2}-2 x}$
2. $\frac{x^{3}+1}{x+1}$
5. $\frac{2 x^{2}-1}{x^{2}+1}$

Answer: $2-\frac{3}{x^{2}+1}$
3. $\frac{x^{3}-1}{x-2}$
6. $\frac{x^{3}+x^{2}+x}{x\left(x^{2}+1\right)}$

Answer: $x^{2}+2 x+4+\frac{7}{x-2}$
Answer: $1+\frac{x^{2}}{x^{3}+x}$

Factoring

1. Rational Roots Theorem: If $F(x)=A x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+B=0$ is a polynomial, then for each rational solution $x=p / q$ (with p / q in lowest terms), A will be divisible by q and B will be divisible by p (note that if $F(p / q)=0$ then $(q x-p)$ is a factor of $F(x)$).
2. For any given quadratic $a x^{2}+b x+c$, if $b^{2}-4 a c<0$ the quadratic is irreducible (so look for an arctantype expression). Otherwise, the polynomial factors as $(x-\alpha)(x-\beta)$, where $\alpha, \beta=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Factor the following quadratics if they are reducible, and put them in the form $(a x+b)^{2}+c$ if they are not.

1. $x^{2}+2 x+5$

Not reducible: $(x+1)^{2}+4$
2. $3 x^{2}-5 x-2$

Reducible: $(3 x+1)(x-2)$
3. $x^{2}+x-2$

Reducible: $(x+2)(x-1)$
4. $x^{2}-2 x+2$

Not reducible: $(x-1)^{2}+1$
5. $2 x^{2}+x-3$

Reducible: $(2 x+3)(x-1)$
6. $4 x^{2}-4 x+2$

Not reducible: $(2 x-1)^{2}+1$
7. $x^{2}+6 x+9$

Reducible: $(x+3)^{2}$
8. $6 x^{2}+x-2$

Reducible: $(3 x+2)(2 x-1)$

Putting in Partial Fraction Form

Be careful if there are repeated roots! Be careful with irreducible quadratics! As a template:

$$
\frac{P}{x^{3}\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D x+E}{x^{2}+1}+\frac{F x+G}{\left(x^{2}+1\right)^{2}}
$$

Two methods for decomposing a rational function into partial fractions:

$$
\begin{aligned}
\frac{3 x+2}{(x-1)(x+2)} & =\frac{A}{x-1}+\frac{B}{x+2} \\
3 x+2 & =A(x+2)+B(x-1)
\end{aligned}
$$

1. Get the system of equations $(A+B) x=3 x,(2 A-B)=2$, and solve for A and B .
2. Plug in strategic values of x (here, $x=1$ and $x=-2$)

Try decomposing $\frac{2 x+1}{(x+1)(x-3)}$ using both methods.

$$
\text { Answer: } \frac{2 x+1}{(x+1)(x-3)}=\frac{1}{4}\left(\frac{1}{x+1}\right)+\frac{7}{4}\left(\frac{1}{x-3}\right)
$$

Partial Fraction Battle!

Which way works better? Let's find out!

1. $x+1=A(x+2)+B(x+3)$

Answer: $A=2, B=-1$
2. $x-4=A x+B(x+7)$

Answer: $A=11 / 7, B=-4 / 7$
3. $x^{2}+2 x-1=A(2 x-1)(x+2)+B x(x+2)+C x(2 x-1)$

Answer: $A=1 / 2, B=1 / 10, C=-1 / 10$
4. $x^{2}+3 x=A(x+4)(x-1)+B(x-1)(2 x+1)+C(x+4)(2 x+1)$

Answer: $A=5 / 21, B=4 / 35, C=4 / 15$
5. $x^{2}+x+1=A x(x+3)+B(x+3)+C x^{2}$

Answer: $A=2 / 9, B=1 / 3, C=7 / 9$
6. $x+1=A\left(x^{2}+4\right)+(B x+C) x$

Answer: $A=1 / 4, B=-1 / 4, C=1$

Integrating

To integrate $\frac{P x+Q}{(a x+b)^{2}+c}$:

1. Substitute $u=(a x+b)$ to get something of the form $\frac{R u+S}{u^{2}+c}$
2. Split into $\frac{R u}{u^{2}+c}+\frac{S}{u^{2}+c}$
3. Substitute $v=2 u$ for the first, $u=\tan (t) \sqrt{c}$ for the second.
4. $\int \frac{x^{2}+2 x+3}{x^{2}+1}$
5. $\int \frac{x^{2}+2 x+3}{x^{2}}$

Answer: $x+\ln \left(x^{2}+1\right)+2 \arctan (x)$
Answer: $x+2 \ln (x)-3 / x$
3. $\int \frac{1}{(x-3)(x+1)}$
5. $\int \frac{x^{2}+5}{(x+1)\left(x^{2}+2 x+2\right)}$

Answer: $\frac{1}{4} \ln (x-3)-\frac{1}{4} \ln (x+1)$
4. $\int \frac{x+1}{x\left(x^{2}+1\right)}$

Answer: $\ln (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+\arctan (x)$
Answer: $\quad 6 \ln (x+1)-\frac{5}{2} \log \left(x^{2}+2 x+2\right)-$ $2 \arctan (x+1)$
6. $\int \frac{-x^{3}}{x(x+1)^{2}}$

Answer: $2 \ln (x+1)-x+\frac{1}{x+1}$

