17.2: Nonhomogeneous Linear Equations
 Friday, April 17

Recap: Second-order Linear

Find solutions to the following differential equations:

1. $y^{\prime \prime}+2 y^{\prime}=0 ; y(0)=0, y^{\prime}(0)=3$
2. $y^{\prime \prime}+2 y^{\prime}+3 y=0 ; y(0)=-1, y^{\prime}(0)=2$
3. $y^{\prime \prime}+2 y^{\prime}+y=0 ; y(0)=3, y^{\prime}(0)=0$
4. $y^{\prime \prime}-4 y^{\prime}+9 y=0 ; y(0)=1, y(3)=4$
5. $y^{\prime \prime}-4 y^{\prime}+4 y=0 ; y(0)=y(2)=0$
6. $y^{\prime \prime}-4 y^{\prime}-5 y=0 ; y(0)=1, y(1)=2$

Nonhomogeneous Linear Equations

Let y_{p} be a solution to $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$, where a, b, c are constants.

1. If y_{c} solves $a y^{\prime \prime}+b y^{\prime}+c y=0$, show that $y_{p}+y_{c}$ is another solution to the original problem.
2. If y_{q} is another solution to $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$, show that $y_{p}-y_{q}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.
3. If y_{1} solves $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$ and y_{2} solves $a y^{\prime \prime}+b y^{\prime}+c y=H(x)$, show that $y_{1}+y_{2}$ solves $a y^{\prime \prime}+b y^{\prime}+c y=G(x)+H(x)$.

So to solve an equation of the form $a y^{\prime \prime}+b y^{\prime}+c y=G(x)+H(x)$,

1. Find any y_{g} that solves $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$.
2. Find any y_{h} that solves $a y^{\prime \prime}+b y^{\prime}+c y=H(x)$.
3. Find all y_{c} that solves $a y^{\prime \prime}+b y^{\prime}+c y=0$.
4. All solutions will be of the form $y_{g}+y_{h}+y_{c}$, for some y_{c}.

More advice! This is from the table on page 1153 of Stewart:

1. If $G(x)=e^{k x} P(x)$, try $y_{p}=e^{k x} Q(x)$, where $\operatorname{deg}(P)=\operatorname{deg}(Q)$.
2. If $G(x)=e^{k x} P(x) \cos (m x)$ or $e^{k x} P(x) \sin (m x)$, try $y_{p}(x)=e^{k x} Q(x) \cos (m x)+e^{k x} R(x) \sin (m x)$.
3. If you do the above and get a solution to the complementary equation, try mulitplying y_{p} by x or x^{2}.

Exercises

Find solutions to the following differential equations (the homogenous equations are the same as the ones at the start of the worksheet):

1. $y^{\prime \prime}+2 y^{\prime}=x^{2}+1$
2. $y^{\prime \prime}+2 y^{\prime}+3 y=3 e^{2 x}$
3. $y^{\prime \prime}+2 y^{\prime}+y=2 \sin x$
4. $y^{\prime \prime}-4 y^{\prime}+9 y=x e^{x}$
5. $y^{\prime \prime}-4 y^{\prime}+4 y=x^{2}+e^{x}$
6. $y^{\prime \prime}-4 y^{\prime}-5 y=x+\cos 2 x$
7. $y^{\prime \prime}-3 y=e^{2 x} \sin x ; y(0)=2, y^{\prime}(0)=0$
8. $y^{\prime \prime}-y^{\prime}=x^{2}+x-1 ; y(0)=1, y(2)=1$

Some More Complex Numbers

Using the formula $e^{i \theta}=\cos \theta+i \sin \theta$, write the following numbers in the form $a+b i$ and plot them on the complex plane.

1. $e^{i \pi / 2}$
2. $e^{i \pi / 4}$
3. $2 e^{-i \pi / 3}$
4. $\frac{1}{3} e^{i \pi}$
5. $e^{2+i \pi / 6}$
6. $e^{-1-i \pi}$
7. If $z=r e^{i \theta}$, then write z^{2}, z^{3}, and $1 / z$ in polar form.
8. Find all solutions to $z^{6}=1$ by putting z in the form $r e^{i \theta}$. Plot them in the complex plane.
9. Define the absolute value of $z=a+b i$ as $|z|=\sqrt{a^{2}+b^{2}}$. If $z=r e^{i \theta}$, then find $|z|,\left|z^{2}\right|$, and $|1 / z|$.
