17.2: Nonhomogeneous Linear Equations Friday, April 17

Recap: Second-order Linear

Find solutions to the following differential equations:

1.
$$y'' + 2y' = 0; y(0) = 0, y'(0) = 3$$
4. $y'' - 4y' + 9y = 0; y(0) = 1, y(3) = 4$ 2. $y'' + 2y' + 3y = 0; y(0) = -1, y'(0) = 2$ 5. $y'' - 4y' + 4y = 0; y(0) = y(2) = 0$

3. y'' + 2y' + y = 0; y(0) = 3, y'(0) = 0

5.
$$y'' - 4y' + 4y = 0; y(0) = y(2) = 0$$

6. $y'' - 4y' - 5y = 0; y(0) = 1, y(1) = 2$

Nonhomogeneous Linear Equations

Let y_p be a solution to ay'' + by' + cy = G(x), where a, b, c are constants.

- 1. If y_c solves ay'' + by' + cy = 0, show that $y_p + y_c$ is another solution to the original problem.
- 2. If y_q is another solution to ay'' + by' + cy = G(x), show that $y_p y_q$ is a solution to ay'' + by' + cy = 0.
- 3. If y_1 solves ay'' + by' + cy = G(x) and y_2 solves ay'' + by' + cy = H(x), show that $y_1 + y_2$ solves ay'' + by' + cy = G(x) + H(x).

So to solve an equation of the form ay'' + by' + cy = G(x) + H(x),

- 1. Find any y_g that solves ay'' + by' + cy = G(x).
- 2. Find any y_h that solves ay'' + by' + cy = H(x).
- 3. Find all y_c that solves ay'' + by' + cy = 0.
- 4. All solutions will be of the form $y_g + y_h + y_c$, for some y_c .

More advice! This is from the table on page 1153 of Stewart:

- 1. If $G(x) = e^{kx}P(x)$, try $y_p = e^{kx}Q(x)$, where deg(P) = deg(Q).
- 2. If $G(x) = e^{kx}P(x)\cos(mx)$ or $e^{kx}P(x)\sin(mx)$, try $y_p(x) = e^{kx}Q(x)\cos(mx) + e^{kx}R(x)\sin(mx)$.
- 3. If you do the above and get a solution to the complementary equation, try multiplying y_p by x or x^2 .

Exercises

Find solutions to the following differential equations (the homogenous equations are the same as the ones at the start of the worksheet):

1. $y'' + 2y' = x^2 + 1$ 5. $y'' - 4y' + 4y = x^2 + e^x$ 2. $y'' + 2y' + 3y = 3e^{2x}$ 6. $y'' - 4y' - 5y = x + \cos 2x$ 3. $y'' + 2y' + y = 2\sin x$ 7. $y'' - 3y = e^{2x}\sin x; y(0) = 2, y'(0) = 0$ 4. $y'' - 4y' + 9y = xe^x$ 8. $y'' - y' = x^2 + x - 1; y(0) = 1, y(2) = 1$

Some More Complex Numbers

Using the formula $e^{i\theta} = \cos \theta + i \sin \theta$, write the following numbers in the form a + bi and plot them on the complex plane.

- 1. $e^{i\pi/2}$ 4. $\frac{1}{3}e^{i\pi}$

 2. $e^{i\pi/4}$ 5. $e^{2+i\pi/6}$

 3. $2e^{-i\pi/3}$ 6. $e^{-1-i\pi}$
- 1. If $z = re^{i\theta}$, then write z^2, z^3 , and 1/z in polar form.
- 2. Find all solutions to $z^6 = 1$ by putting z in the form $re^{i\theta}$. Plot them in the complex plane.
- 3. Define the absolute value of z = a + bi as $|z| = \sqrt{a^2 + b^2}$. If $z = re^{i\theta}$, then find $|z|, |z^2|$, and |1/z|.