17.2: Nonhomogeneous Linear Equations
Friday, April 17

Recap: Second-order Linear

Find solutions to the following differential equations:

1. \(y'' + 2y' = 0; y(0) = 0, y'(0) = 3 \)
2. \(y'' + 2y' + 3y = 0; y(0) = -1, y'(0) = 2 \)
3. \(y'' + 2y' + y = 0; y(0) = 3, y'(0) = 0 \)
4. \(y'' - 4y' + 9y = 0; y(0) = 1, y(3) = 4 \)
5. \(y'' - 4y' + 4y = 0; y(0) = y(2) = 0 \)
6. \(y'' - 4y' - 5y = 0; y(0) = 1, y(1) = 2 \)

Nonhomogeneous Linear Equations

Let \(y_p \) be a solution to \(ay'' + by' + cy = G(x) \), where \(a, b, c \) are constants.

1. If \(y_c \) solves \(ay'' + by' + cy = 0 \), show that \(y_p + y_c \) is another solution to the original problem.
2. If \(y_q \) is another solution to \(ay'' + by' + cy = G(x) \), show that \(y_p - y_q \) is a solution to \(ay'' + by' + cy = 0 \).
3. If \(y_1 \) solves \(ay'' + by' + cy = G(x) \) and \(y_2 \) solves \(ay'' + by' + cy = H(x) \), show that \(y_1 + y_2 \) solves \(ay'' + by' + cy = G(x) + H(x) \).

So to solve an equation of the form \(ay'' + by' + cy = G(x) + H(x) \),

1. Find any \(y_g \) that solves \(ay'' + by' + cy = G(x) \).
2. Find any \(y_h \) that solves \(ay'' + by' + cy = H(x) \).
3. Find all \(y_c \) that solves \(ay'' + by' + cy = 0 \).
4. All solutions will be of the form \(y_g + y_h + y_c \), for some \(y_c \).

More advice! This is from the table on page 1153 of Stewart:

1. If \(G(x) = e^{kx}P(x) \), try \(y_p = e^{kx}Q(x) \), where \(\text{deg}(P) = \text{deg}(Q) \).
2. If \(G(x) = e^{kx}P(x)\cos(mx) \) or \(e^{kx}P(x)\sin(mx) \), try \(y_p(x) = e^{kx}Q(x)\cos(mx) + e^{kx}R(x)\sin(mx) \).
3. If you do the above and get a solution to the complementary equation, try multiplying \(y_p \) by \(x \) or \(x^2 \).
Exercises

Find solutions to the following differential equations (the homogenous equations are the same as the ones at the start of the worksheet):

1. \(y'' + 2y' = x^2 + 1 \)
2. \(y'' + 2y' + 3y = 3e^{2x} \)
3. \(y'' + 2y' + y = 2 \sin x \)
4. \(y'' - 4y' + 9y = xe^x \)
5. \(y'' - 4y' + 4y = x^2 + e^x \)
6. \(y'' - 4y' - 5y = x + \cos 2x \)
7. \(y'' - 3y = e^{2x} \sin x; \ y(0) = 2, y'(0) = 0 \)
8. \(y'' - y' = x^2 + x - 1; \ y(0) = 1, y(2) = 1 \)

Some More Complex Numbers

Using the formula \(e^{i\theta} = \cos \theta + i \sin \theta \), write the following numbers in the form \(a + bi \) and plot them on the complex plane.

1. \(e^{i\pi/2} \)
2. \(e^{i\pi/4} \)
3. \(2e^{-i\pi/3} \)
4. \(\frac{1}{3}e^{i\pi} \)
5. \(e^{2+i\pi/6} \)
6. \(e^{-1-i\pi} \)

1. If \(z = re^{i\theta} \), then write \(z^2, z^3 \), and \(1/z \) in polar form.
2. Find all solutions to \(z^6 = 1 \) by putting \(z \) in the form \(re^{i\theta} \). Plot them in the complex plane.
3. Define the absolute value of \(z = a + bi \) as \(|z| = \sqrt{a^2 + b^2} \). If \(z = re^{i\theta} \), then find \(|z|, |z|^2 \), and \(|1/z| \).