17.2: Nonhomogeneous Linear Equations: Solutions
 Friday, April 17

Recap: Second-order Linear

Find solutions to the following differential equations:

1. $y^{\prime \prime}+2 y^{\prime}=0 ; y(0)=0, y^{\prime}(0)=3$

$$
\begin{gathered}
r=0,-2 \\
y=c_{1}+c_{2} e^{-2 x} \\
y=\frac{3}{2}-\frac{3}{2} e^{-2 x}
\end{gathered}
$$

2. $y^{\prime \prime}+2 y^{\prime}+3 y=0 ; y(0)=-1, y^{\prime}(0)=2$

$$
\begin{gathered}
r=-1 \pm i \sqrt{2} \\
y=e^{-x}(A \sin (\sqrt{2} x)+B \cos (\sqrt{2} x)) \\
y=\frac{1}{2} e^{-x}(\sqrt{2} \sin (\sqrt{2} x)-2 \cos (\sqrt{2} x))
\end{gathered}
$$

3. $y^{\prime \prime}+2 y^{\prime}+y=0 ; y(0)=3, y^{\prime}(0)=0$

$$
\begin{gathered}
r=-1 \\
y=c_{1} e^{-x}+c_{2} x e^{-x} \\
y=3 e^{-x}+3 x e^{-x}
\end{gathered}
$$

4. $y^{\prime \prime}-4 y^{\prime}+9 y=0 ; y(0)=1, y(3)=4$

$$
\begin{gathered}
r=2 \pm i \sqrt{5} \\
y=e^{2}(A \cos (\sqrt{5} x)+B \sin (\sqrt{5} x)) \\
A=1 / e^{2}, B=\frac{4-\cos (3 \sqrt{5})}{e^{2} \sin (3 \sqrt{5})}
\end{gathered}
$$

5. $y^{\prime \prime}-4 y^{\prime}+4 y=0 ; y(0)=y(2)=0$

$$
\begin{gathered}
r=2 \\
y=c_{1} e^{2 x}+c_{2} x e^{2 x} \\
y=0
\end{gathered}
$$

6. $y^{\prime \prime}-4 y^{\prime}-5 y=0 ; y(0)=1, y(1)=2$

$$
\begin{gathered}
r=-1,5 \\
y=c_{1} e^{-x}+c_{2} e^{5 x} \\
c_{1}=\frac{e^{6}-2 e}{e^{6}-1}, c_{2}=\frac{2 e-1}{e^{6}-1}
\end{gathered}
$$

Nonhomogeneous Linear Equations

Let y_{p} be a solution to $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$, where a, b, c are constants.

1. If y_{c} solves $a y^{\prime \prime}+b y^{\prime}+c y=0$, show that $y_{p}+y_{c}$ is another solution to the original problem.
2. If y_{q} is another solution to $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$, show that $y_{p}-y_{q}$ is a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$.
3. If y_{1} solves $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$ and y_{2} solves $a y^{\prime \prime}+b y^{\prime}+c y=H(x)$, show that $y_{1}+y_{2}$ solves $a y^{\prime \prime}+b y^{\prime}+c y=G(x)+H(x)$.

So to solve an equation of the form $a y^{\prime \prime}+b y^{\prime}+c y=G(x)+H(x)$,

1. Find any y_{g} that solves $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$.
2. Find any y_{h} that solves $a y^{\prime \prime}+b y^{\prime}+c y=H(x)$.
3. Find all y_{c} that solves $a y^{\prime \prime}+b y^{\prime}+c y=0$.
4. All solutions will be of the form $y_{g}+y_{h}+y_{c}$, for some y_{c}.

More advice! This is from the table on page 1153 of Stewart:

1. If $G(x)=e^{k x} P(x)$, try $y_{p}=e^{k x} Q(x)$, where $\operatorname{deg}(P)=\operatorname{deg}(Q)$.
2. If $G(x)=e^{k x} P(x) \cos (m x)$ or $e^{k x} P(x) \sin (m x)$, try $y_{p}(x)=e^{k x} Q(x) \cos (m x)+e^{k x} R(x) \sin (m x)$.
3. If you do the above and get a solution to the complementary equation, try mulitplying y_{p} by x or x^{2}.

Exercises

Find solutions to the following differential equations (the homogenous equations are the same as the ones at the start of the worksheet):

1. $y^{\prime \prime}+2 y^{\prime}=x^{2}+1$

Try $y=A x^{2}+B x+C$, get

$$
4 A x+(2 A+2 B)=x^{2}+1
$$

This doesn't work, so try $y=A x^{3}+B x^{2}+C x+D$. This gives $A=1 / 6, B=-1 / 4, C=3 / 4$, and any value for D. So $y_{p}=\frac{1}{6} x^{3}-\frac{1}{4} x^{2}+\frac{3}{4} x$. Combining with the solution to the complementary equation gives

$$
y=\frac{1}{6} x^{3}-\frac{1}{4} x^{2}+\frac{3}{4} x+c_{1}+c_{2} e^{-2 x}
$$

2. $y^{\prime \prime}+2 y^{\prime}+3 y=3 e^{2 x}$

Try $y=k e^{2 x}$, and get $4 y+4 y+3 y=11 y=11 k e^{2 x}=3 e^{2 x}$, so $k=3 / 11$ and $y_{p}=\frac{3}{11} e^{2 x}$. Combining with the solution to the complementary equation gives

$$
y=\frac{3}{11} e^{2 x}+e^{-x}(A \sin (\sqrt{2} x)+B \cos (\sqrt{2} x))
$$

3. $y^{\prime \prime}+2 y^{\prime}+y=2 \sin x$

Try $y=A \sin x+B \cos x$, and (since $y^{\prime \prime}+y=0$ for $\sin x$ and $\cos x$) get $2 A \cos x-2 B \sin x=2 \sin x$, so $y_{p}=-\cos x$. Combining with the solution to the complementary equation gives

$$
y=-\cos x+c_{1} e^{-x}+c_{2} x e^{-x}
$$

4. $y^{\prime \prime}-4 y^{\prime}+9 y=x e^{x}$

Try $y=A x e^{x}+B e^{x}$, get $y^{\prime}=A e^{x}+A x e^{x}+B e^{x}, y^{\prime \prime}=2 A e^{x}+A x e^{x}+B e^{x}$, and from there get

$$
\begin{aligned}
6 A x e^{x}+(6 B-2 A) e^{x} & =x e^{x} \\
A & =1 / 6 \\
B & =1 / 18
\end{aligned}
$$

Combining with the solution to the complementary equation gives

$$
\left.y=\frac{1}{6} A x e^{x}-\frac{1}{18} e^{x}+\cos (\sqrt{5} x)+\frac{4-\cos (3 \sqrt{5})}{\sin (3 \sqrt{5})} \sin (\sqrt{5} x)\right)
$$

5. $y^{\prime \prime}-4 y^{\prime}+4 y=x^{2}+e^{x}$

First solve $y^{\prime \prime}-4 y^{\prime}+4 y=x^{2}$: guess $y_{1}=A x^{2}+B x+C$ and get $y_{1}=x^{2} / 4+x / 2+3 / 8$. Then do the same for $y^{\prime \prime}-4 y^{\prime}+4 y=e^{x}$: guess $y_{2}=A e^{x}$ and get $y_{2}=e^{x}$. Thus $y_{p}=e^{x}+x^{2} / 4+x / 2+3 / 8$. Combining with the solution to the complementary equation gives

$$
y=e^{x}+x^{2} / 4+x / 2+3 / 8+c_{1} e^{2 x}+c_{2} x e^{2 x}
$$

6. $y^{\prime \prime}-4 y^{\prime}-5 y=x+\cos 2 x$

First solve $y^{\prime \prime}-4 y^{\prime}-5 y=x$: guess $y=A x+B$ and get $y=\frac{-1}{5} x+\frac{4}{25}$. Then do the same for $\cos 2 x$ guessing $y=A \sin 2 x+B \cos 2 x$ and get $y=\frac{-8}{145} \sin (2 x)-\frac{9}{145} \cos (2 x)$. Therefore one solution is $y_{p}=\frac{-8}{145} \sin (2 x)-\frac{9}{145} \cos (2 x)-\frac{1}{5} x+\frac{4}{25}$, and the general solution is

$$
y=c_{1} e^{-x}+c_{2} e^{5 x}-\frac{8}{145} \sin (2 x)-\frac{9}{145} \cos (2 x)-\frac{1}{5} x+\frac{4}{25}
$$

7. $y^{\prime \prime}-3 y=e^{2 x} \sin x ; y(0)=2, y^{\prime}(0)=0$

First guess $y=A e^{2 x} \sin x+B e^{2 x} \cos x$ and get $y_{p}=\frac{-1}{4} e^{2 x} \cos x$. Combine with the solutions to $y^{\prime \prime}-3 y=0$ and get

$$
y=c_{1} e^{x \sqrt{3}}+c_{2} e^{-x \sqrt{3}}-\frac{1}{4} e^{2 x} \cos x
$$

Plugging in the initial conditions give the extra equations

$$
\begin{aligned}
c_{1}+c_{2}-1 / 4 & =2 \\
c_{1} \sqrt{3}-c_{2} \sqrt{3}-1 / 2 & =0
\end{aligned}
$$

Solving yields the coefficients

$$
c_{1}, c_{2}=9 / 8 \pm \frac{1}{4 \sqrt{3}}
$$

8. $y^{\prime \prime}-y^{\prime}=x^{2}+x-1 ; y(0)=1, y(2)=1$

Guessing $y=A x^{3}+B x^{2}+C x+D$ and combining with the solutions to $y^{\prime \prime}-y^{\prime}=0$ gives $y_{p}=$ $c_{1} e^{x}+c_{2}-x^{3} / 3-3 x^{2} / 2-2 x$. Plugging in the initial conditions gives

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
c_{1} e^{2}+c_{2}-2 / 3 & =1
\end{aligned}
$$

Solving gives the coefficients

$$
\begin{aligned}
c_{1}=\frac{2}{3\left(e^{2}-1\right)} \\
c_{2}=1-\frac{2}{3\left(e^{2}-1\right)}
\end{aligned}
$$

Some More Complex Numbers

Using the formula $e^{i \theta}=\cos \theta+i \sin \theta$, write the following numbers in the form $a+b i$ and plot them on the complex plane.

1. $e^{i \pi / 2}=i$
2. $e^{i \pi / 4}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$
3. $2 e^{-i \pi / 3}=\frac{1}{2}-i \sqrt{3}$
4. $\frac{1}{3} e^{i \pi}=-1 / 3$
5. $e^{2+i \pi / 6}=e^{2}(\sqrt{3} / 2+i / 2)=e^{2} \frac{\sqrt{3}}{2}+\frac{e^{2}}{2} i$
6. $e^{-1-i \pi}=-1 / e$
7. If $z=r e^{i \theta}$, then write z^{2}, z^{3}, and $1 / z$ in polar form.

$$
\begin{aligned}
z^{2} & =r^{2} e^{2 i \theta} \\
z^{3} & =r^{3} e^{3 i \theta} \\
1 / 2 & =\frac{1}{r} e^{-i \theta}
\end{aligned}
$$

2. Find all solutions to $z^{6}=1$ by putting z in the form $r e^{i \theta}$. Plot them in the complex plane.

$$
\begin{aligned}
z^{6} & =1 \\
\left(r e^{i \theta}\right)^{6} & =1 \\
r^{6}(\cos (6 \theta)+i \sin (6 \theta)) & =1
\end{aligned}
$$

The solutions are all with $r=1, \theta=0, \pi / 6,2 \pi / 6,3 \pi / 6,4 \pi / 6,5 \pi / 6$. When plotted in the complex plane these six solutions will form the vertices of a regular hexagon.
3. Define the absolute value of $z=a+b i$ as $|z|=\sqrt{a^{2}+b^{2}}$. If $z=r e^{i \theta}$, then find $|z|,\left|z^{2}\right|$, and $|1 / z|$.
$|z|=r,\left|z^{2}\right|=r^{2},|1 / z|=1 / r$. This is because $\left|e^{i \theta}\right|=|\cos \theta+i \sin \theta|=\cos ^{2} \theta+\sin ^{2} \theta=1$ for all θ. The geometric interpretation is that for any θ the point $z=e^{i \theta}$ lies on a circle with radius 1 centered on the origin.

