
17.2: Nonhomogeneous Linear Equations: Solutions
Friday, April 17

Recap: Second-order Linear

Find solutions to the following differential equations:

1. y′′ + 2y′ = 0; y(0) = 0, y′(0) = 3

r = 0,−2

y = c1 + c2e
−2x

y =
3

2
− 3

2
e−2x

2. y′′ + 2y′ + 3y = 0; y(0) = −1, y′(0) = 2

r = −1± i
√

2

y = e−x(A sin(
√

2x) +B cos(
√

2x))

y =
1

2
e−x(
√

2 sin(
√

2x)− 2 cos(
√

2x))

3. y′′ + 2y′ + y = 0; y(0) = 3, y′(0) = 0

r = −1

y = c1e
−x + c2xe

−x

y = 3e−x + 3xe−x

4. y′′ − 4y′ + 9y = 0; y(0) = 1, y(3) = 4

r = 2± i
√

5

y = e2(A cos(
√

5x) +B sin(
√

5x))

A = 1/e2, B =
4− cos(3

√
5)

e2 sin(3
√

5)

5. y′′ − 4y′ + 4y = 0; y(0) = y(2) = 0

r = 2

y = c1e
2x + c2xe

2x

y = 0

6. y′′ − 4y′ − 5y = 0; y(0) = 1, y(1) = 2

r = −1, 5

y = c1e
−x + c2e

5x

c1 =
e6 − 2e

e6 − 1
, c2 =

2e− 1

e6 − 1

1



Nonhomogeneous Linear Equations

Let yp be a solution to ay′′ + by′ + cy = G(x), where a, b, c are constants.

1. If yc solves ay′′ + by′ + cy = 0, show that yp + yc is another solution to the original problem.

2. If yq is another solution to ay′′+ by′+ cy = G(x), show that yp− yq is a solution to ay′′+ by′+ cy = 0.

3. If y1 solves ay′′ + by′ + cy = G(x) and y2 solves ay′′ + by′ + cy = H(x), show that y1 + y2 solves
ay′′ + by′ + cy = G(x) +H(x).

So to solve an equation of the form ay′′ + by′ + cy = G(x) +H(x),

1. Find any yg that solves ay′′ + by′ + cy = G(x).

2. Find any yh that solves ay′′ + by′ + cy = H(x).

3. Find all yc that solves ay′′ + by′ + cy = 0.

4. All solutions will be of the form yg + yh + yc, for some yc.

More advice! This is from the table on page 1153 of Stewart:

1. If G(x) = ekxP (x), try yp = ekxQ(x), where deg(P ) = deg(Q).

2. If G(x) = ekxP (x) cos(mx) or ekxP (x) sin(mx), try yp(x) = ekxQ(x) cos(mx) + ekxR(x) sin(mx).

3. If you do the above and get a solution to the complementary equation, try mulitplying yp by x or x2.

Exercises

Find solutions to the following differential equations (the homogenous equations are the same as the ones at
the start of the worksheet):

1. y′′ + 2y′ = x2 + 1

Try y = Ax2 +Bx+ C, get

4Ax+ (2A+ 2B) = x2 + 1

This doesn’t work, so try y = Ax3 +Bx2 +Cx+D. This gives A = 1/6, B = −1/4, C = 3/4, and any
value for D. So yp = 1

6x
3 − 1

4x
2 + 3

4x. Combining with the solution to the complementary equation
gives

y =
1

6
x3 − 1

4
x2 +

3

4
x+ c1 + c2e

−2x

2. y′′ + 2y′ + 3y = 3e2x

Try y = ke2x, and get 4y + 4y + 3y = 11y = 11ke2x = 3e2x, so k = 3/11 and yp = 3
11e

2x. Combining
with the solution to the complementary equation gives

y =
3

11
e2x + e−x(A sin(

√
2x) +B cos(

√
2x))

3. y′′ + 2y′ + y = 2 sinx

Try y = A sinx + B cosx, and (since y′′ + y = 0 for sinx and cosx) get 2A cosx − 2B sinx = 2 sinx,
so yp = − cosx. Combining with the solution to the complementary equation gives

y = − cosx+ c1e
−x + c2xe

−x

2



4. y′′ − 4y′ + 9y = xex

Try y = Axex +Bex, get y′ = Aex +Axex +Bex, y′′ = 2Aex +Axex +Bex, and from there get

6Axex + (6B − 2A)ex = xex

A = 1/6

B = 1/18

Combining with the solution to the complementary equation gives

y =
1

6
Axex − 1

18
ex + cos(

√
5x) +

4− cos(3
√

5)

sin(3
√

5)
sin(
√

5x))

5. y′′ − 4y′ + 4y = x2 + ex

First solve y′′ − 4y′ + 4y = x2 : guess y1 = Ax2 + Bx + C and get y1 = x2/4 + x/2 + 3/8. Then do
the same for y′′ − 4y′ + 4y = ex: guess y2 = Aex and get y2 = ex. Thus yp = ex + x2/4 + x/2 + 3/8.
Combining with the solution to the complementary equation gives

y = ex + x2/4 + x/2 + 3/8 + c1e
2x + c2xe

2x

6. y′′ − 4y′ − 5y = x+ cos 2x

First solve y′′ − 4y′ − 5y = x: guess y = Ax + B and get y = −1
5 x + 4

25 . Then do the same for
cos 2x guessing y = A sin 2x+B cos 2x and get y = −8

145 sin(2x)− 9
145 cos(2x). Therefore one solution is

yp = −8
145 sin(2x)− 9

145 cos(2x)− 1
5x+ 4

25 , and the general solution is

y = c1e
−x + c2e

5x − 8

145
sin(2x)− 9

145
cos(2x)− 1

5
x+

4

25

7. y′′ − 3y = e2x sinx; y(0) = 2, y′(0) = 0

First guess y = Ae2x sinx + Be2x cosx and get yp = −1
4 e

2x cosx. Combine with the solutions to
y′′ − 3y = 0 and get

y = c1e
x
√
3 + c2e

−x
√
3 − 1

4
e2x cosx

Plugging in the initial conditions give the extra equations

c1 + c2 − 1/4 = 2

c1
√

3− c2
√

3− 1/2 = 0

Solving yields the coefficients

c1, c2 = 9/8± 1

4
√

3

8. y′′ − y′ = x2 + x− 1; y(0) = 1, y(2) = 1

Guessing y = Ax3 + Bx2 + Cx + D and combining with the solutions to y′′ − y′ = 0 gives yp =
c1e

x + c2 − x3/3− 3x2/2− 2x. Plugging in the initial conditions gives

c1 + c2 = 1

c1e
2 + c2 − 2/3 = 1

3



Solving gives the coefficients

c1 =
2

3(e2 − 1)

c2 = 1− 2

3(e2 − 1)

Some More Complex Numbers

Using the formula eiθ = cos θ + i sin θ, write the following numbers in the form a+ bi and plot them on the
complex plane.

1. eiπ/2 = i

2. eiπ/4 =
√
2
2 +

√
2
2 i

3. 2e−iπ/3 = 1
2 − i

√
3

4. 1
3e
iπ = −1/3

5. e2+iπ/6 = e2(
√

3/2 + i/2) = e2
√
3
2 + e2

2 i

6. e−1−iπ = −1/e

1. If z = reiθ, then write z2, z3, and 1/z in polar form.

z2 = r2e2iθ

z3 = r3e3iθ

1/2 =
1

r
e−iθ

2. Find all solutions to z6 = 1 by putting z in the form reiθ. Plot them in the complex plane.

z6 = 1

(reiθ)6 = 1

r6(cos(6θ) + i sin(6θ)) = 1

The solutions are all with r = 1, θ = 0, π/6, 2π/6, 3π/6, 4π/6, 5π/6. When plotted in the complex
plane these six solutions will form the vertices of a regular hexagon.

3. Define the absolute value of z = a+ bi as |z| =
√
a2 + b2. If z = reiθ, then find |z|, |z2|, and |1/z|.

|z| = r, |z2| = r2, |1/z| = 1/r. This is because |eiθ| = |cosθ + i sin θ| = cos2 θ + sin2 θ = 1 for all θ. The
geometric interpretation is that for any θ the point z = eiθ lies on a circle with radius 1 centered on
the origin.
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