11.10: More Taylor Series
 Friday, March 20

Recap

Find the intervals of convergence of the following power series:

1. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n^{2} \cdot 2^{n}}$
2. $\sum_{n=1}^{\infty} \frac{(1-x)^{n}}{3^{n}}$
3. $\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{5^{n} \sqrt{n}}$
4. $\sum_{n=1}^{\infty} \frac{(4-3 x)^{n}}{n}$
5. $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{3^{n}}$
6. $\sum_{n=1}^{\infty} \frac{(2-5 x)^{n}}{n \cdot 3^{n}}$

Polynomial Fitting

1. Find a parabola $P(x)=a x^{2}+b x+c$ that goes through the points $(-1,1),(0,0)$, and $(1,2)$.
2. Find a parabola $P(x)$ such that $P(0)=0, P^{\prime}(0)=-3$, and $P^{\prime \prime}(0)=5$.
3. Find a cubic polynomial $Q(x)$ such that $Q(0)=0, Q^{\prime}(0)=-3, Q^{\prime \prime}(0)=5$, and $Q^{\prime \prime \prime}(0)=-1$. How does its graph compare with the graph of the parabola in the previous question?
4. Find a parabola $P(x)$ such that $P(2)=0, P^{\prime}(2)=1$, and $P^{\prime \prime}(2)=-1$ (Hint: write it as $a(x-2)^{2}+$ $b(x-2)+c$ rather than $a x^{2}+b x+c$. How does this help?)
5. What is the derivative of $f(x)=x^{3}$ at $x=0$? The second derivative? Third? Fourth?

Taylor Series: Using Derivatives

Compute the Taylor series for the following functions up to the x^{3} term. Graph the functions and the polynomial approximations.

1. $\ln x$ around $x=1$
2. $\ln x$ around $x=2$
3. $1 / \sqrt{x}$ around $x=1$
4. $1 / \sqrt{x}$ around $x=4$
5. $\cos x$ around $x=\pi / 2$
6. $\tan x$ around $x=0$

Taylor Series: Using Other Taylor Series

1. Compute the Taylor series for $e^{x} \sin (x)$ around $x=0$ and around $x=1$ up to the x^{4} term.
2. Compute the Taylor series for $\frac{\cos x}{1-x}$ around $x=0$ up to the x^{4} term.
