11.10: More Taylor Series
 Friday, March 20

Recap

Find the intervals of convergence of the following power series:

1. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n^{2} \cdot 2^{n}}:[1,5]$
2. $\sum_{n=1}^{\infty} \frac{(1-x)^{n}}{3^{n}}:(-2,4)$
3. $\sum_{n=1}^{\infty} \frac{2^{n}(x-1)^{n}}{5^{n} \sqrt{n}}:[-3 / 2,7 / 2)$
4. $\sum_{n=1}^{\infty} \frac{(4-3 x)^{n}}{n}:(1,5 / 3]$
5. $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{3^{n}}:(-1,2)$
6. $\sum_{n=1}^{\infty} \frac{(2-5 x)^{n}}{n \cdot 3^{n}}:(-1 / 5,1]$

Polynomial Fitting

1. Find a parabola $P(x)=a x^{2}+b x+c$ that goes through the points $(-1,1),(0,0)$, and $(1,2)$.
$P(x)=\frac{3}{2} x^{2}+\frac{1}{2} x$.
2. Find a parabola $P(x)$ such that $P(0)=0, P^{\prime}(0)=-3$, and $P^{\prime \prime}(0)=5$.
$P(x)=\frac{5}{2} x^{2}-3 x$.
3. Find a cubic polynomial $Q(x)$ such that $Q(0)=0, Q^{\prime}(0)=-3, Q^{\prime \prime}(0)=5$, and $Q^{\prime \prime \prime}(0)=-1$. How does its graph compare with the graph of the parabola in the previous question?
$Q(x)=\frac{-1}{6} x^{3}+\frac{5}{2} x^{2}-3 x$. As the graph below shows, the two functions are most similar at $x=0$.

4. Find a parabola $P(x)$ such that $P(2)=0, P^{\prime}(2)=1$, and $P^{\prime \prime}(2)=-1$ (Hint: write it as $a(x-2)^{2}+$ $b(x-2)+c$ rather than $a x^{2}+b x+c$. How does this help?) $P(x)=\frac{-1}{2}(x-2)^{2}+(x-2)$.
5. What is the derivative of $f(x)=x^{3}$ at $x=0$? The second derivative? Third? Fourth?

First derivative: 0
Second derivative: 0
Third derivative: 6
Fourth derivative: 0

Taylor Series: Using Derivatives

Compute the Taylor series for the following functions up to the x^{3} term. Graph the functions and the polynomial approximations.

1. $\ln x$ around $x=1:(x-1)-(x-1)^{/} 2+(x-1)^{3} / 3$
2. $\ln x$ around $x=2: \ln (2)+\frac{1}{2}(x-2)-\frac{1}{8}(x-2)^{2}+\frac{1}{24}(x-2)^{3}$
3. $1 / \sqrt{x}$ around $x=1: 1-\frac{1}{2}(x-1)+\frac{3}{8}(x-1)^{2}-\frac{5}{16}(x-1)^{3}$
4. $1 / \sqrt{x}$ around $x=4: \frac{1}{2}-\frac{1}{16}(x-4)+\frac{3}{256}(x-4)^{2}-\frac{5}{2048}(x-4)^{3}$
5. $\cos x$ around $x=\pi / 2:-(x-\pi / 2)+\frac{1}{6}(x-\pi / 2)^{3}$
6. $\tan x$ around $x=0: x+\frac{x^{3}}{3}$

Below is a graph for $y=1 / \sqrt{x}$ with the cubic approximations at $x=1$ and $x=4$:

Taylor Series: Using Other Taylor Series

1. Compute the Taylor series for $e^{x} \sin (x)$ around $x=0$ and around $x=1$ up to the x^{4} term.

Around $x=0: e^{x} \sin x=x+x^{2}+x^{3} / 3+\ldots$
2. Compute the Taylor series for $\frac{\cos x}{1-x}$ around $x=0$ up to the x^{4} term.

Around $x=0: \frac{\cos x}{1-x}=1+x+x^{2} / 2+x^{3} / 2+13 x^{4} / 24+\ldots$

