
Midterm Review 1–Solutions
Monday, February 9

Example Functions

When deciding whether a statement is true or trying to find a counterexample, the following functions may
come in handy:

1. 1/x, 1/x2, 1/
√
x. Or any 1/xp, really, but these three are the simplest.

2. f(x) = 0. It’s always zero.

3. f(x) = 1. It’s always one.

4. f(x) = e−x. Helpful since
∫∞
1
xne−x dx converges for any n.

5. Piecewise functions: If you want a positive function that satisfies limx→0 f(x) = ∞ but where∫∞
0
f(x) dx converges, you could try

f(x) =

{
1/
√
x x ∈ [0, 1]

1/x2 x ∈ [1,∞)

For each of the following, assert that is true or find a counterexample. Assume that f(x), g(x) ≥ 0 in all
cases.

1. If
∫∞
1
xf(x) dx converges, then

∫∞
1
f(x) dx converges.

True by the comparison test, since xf(x) ≥ f(x) when x ≥ 1.

2. If
∫∞
1
f(x) dx converges, then

∫∞
1
xf(x) dx converges.

False: f(x) = 1/x2.

3. If
∫ 1

0
f(x) dx diverges, then

∫ 1

0
xf(x) dx diverges.

False: f(x) = 1/x.

4. If
∫∞
1
f(x) dx and

∫∞
1
g(x) dx converge, then

∫∞
1
f(x) + g(x) converges.

True.

5. If
∫∞
1
f(x) dx diverges, and

∫∞
1
g(x) dx converges, then

∫∞
1
f(x)g(x) dx diverges.

False: f(x) = 1/x, g(x) = 1/x2, or just g(x) = 0 will do.

6. If
∫∞
0
f(x) dx always diverges.

False: f(x) = e−x, f(x) = 0, f(x) =

{
1 x ≤ 1

1/x2 x ≥ 1

7. If
∫ 1

0
xf(x) dx diverges, then

∫ 1

0
f2(x) dx diverges.

True: xf(x) ≤ f(x) for 0 ≤ x ≤ 1, so
∫ 1

0
f(x) diverges. This in turn means that

∫ 1

0
f2(x) diverges,

though the proof is a little more subtle: one way to do it is to set g(x) =

{
f(x) f(x) ≥ 1

0 f(x) < 1,

in which case
∫ 1

0
f2(x) ≥

∫ 1

0
g2(x) ≥

∫ 1

0
g(x) ≥

∫ 1

0
f(x) − 1. Since

∫ 1

0
f(x) dx diverges,

∫ 1

0
f2(x) dx

does too by the comparison test. Roughly, the idea behind this is that
∫
f(x) diverges because of its

vertical asymptotes, so the vertical asymptotes of
∫
f2(x) will be even “worse” as far as convergence

is concerned since when f(x) is large f2(x) will be much larger.
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8. At least one of
∫ 1

0
f(x) dx and

∫ 1

0
1/f(x) dx will always diverge.

False: f(x) = 1 or f(x) =
√
x will do as counterexamples.

9. At least one of
∫∞
1
f(x) dx and

∫∞
1

1/f(x) dx will always diverge.

True, because for
∫∞
1
f(x) dx to converge we need limx→∞ f(x) = 0, in which case limx→∞ 1/f(x) =∞,

making
∫∞
1

1/f(x) dx diverge.

10. For every f(x), there is a g(x) such that
∫∞
1
f(x)− g(x) dx converges.

True: let g(x) = f(x).

11. For every f(x), there is a g(x) such that
∫∞
1
f(x)g(x) dx converges.

True: Let g(x) = 0 (if we require g(x) > 0, then let g(x) = 1
x2f(x) ).

12. If
∫ 1

0
f(x)/

√
x diverges, then f(x) is unbounded on [0, 1] (that is, it has a vertical asymptote some-

where).

True: Suppose f(x) ≤ C on [0, 1]. Then
∫ 1

0
f(x)/

√
x ≤

∫ 1

0
C/
√
x, which converges. This means that if

f(x) is bounded then
∫ 1

0
f(x)/x converges. By the contrapositive of that statement, if f(x)/x diverges

then f(x) must be unbounded.

13. If
∫ 1

0
f(x)/x diverges, then f(x) is unbounded on [0, 1].

False: f(x) = 1.

Counting the Powers

Decide whether the following integrals converge or diverge:

1.

∫ ∞
10

x1/2(x+ 3)2/3

(x− 5)2
dx

Looking at the highest powers of x gives

∫
x1/2x2/3

x2
=

∫
1

x5/6
, which diverges by the p-test.

2.

∫ ∞
10

(x+ 3)4 + sin(3x) + (x− 2)2

x3(x− 2)3
dx

Looking at the highest powers gives

∫
x4

x6
=

∫
1/x2, which converges.

3.

∫ ∞
10

(x+
√
x)5

(
√
x+ 1)7(x− 2)2

dx

Looking at the highest powers gives

∫
x5

x7/2x2
=

∫
1/x1/2, which diverges.

4.

∫ ∞
10

x(x+ 1)(x+ 2)(x+ 3)

(x+ 1/x+ sin(x))6 + sin(sin(x))
dx

Looking at the highest powers gives

∫
x4

x6
=

∫
1/x2, which converges.
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Counting the Zeros/L’Hospital’s Rule

Decide whether the following integrals converge or diverge:

1.

∫ 4

0

1− cos(x)

x2
dx

The potential asymptote is at x = 0. Check by L’Hospital’s rule:

lim
x→0

1− cos(x)

x2
= lim
x→0

sin(x)

2x

= lim
x→0

cos(x)

2

= 1/2

The limit is finite, so the function is bounded and the integral converges.

2.

∫ 4

0

sin(x) ln(1 + x)

x8/3
dx

The potential asymptote is at x = 0. Use the knowledge that limx→0 sin(x)/x = limx→0 ln(1+x)/x = 1
(check with L’Hop’s rule) to simplify:

sin(x) ln(1 + x)

x8/3
=

sinx

x

ln(1 + x)

x

1

x2/3
≈ 1

x2/3

as x→ 0. The function therefore grows like x2/3, and so the integral converges. x

3.

∫ 4

0

x2 − 4

x− 2
dx

x2−4
x−2 = x+ 2 when x 6= 2, so the function is bounded and the integral converges.

4.

∫ 4

0

cos(x) + 1

x− π
dx

The potential asymptote is at x = π. Using L’Hospital’s rule gives

lim
x→π

cos(x) + 1

x− π
= lim
x→π

− sin(x)

1

= 0

So the function is bounded, and the integral converges.

5.

∫ 4

0

cos(x) + 1

(x− π)2
dx

Same as before, but one more step of L’Hop’s rule is needed.

lim
x→π

cos(x) + 1

(x− π)2
= lim
x→π

− sin(x)

2(x− π)

= lim
x→π

− cos(x)

2

= 1/2
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The function is again bounded, and the integral converges. Note that if the denominator had been
(x − π)3, or raised to any power greater than 3, then the integral would have diverges. Any power
2 < p < 3 would give a convergent integral.

6.

∫ 4

0

ex
2 − 1

x5/2
dx

L’Hop’s rule at x = 0, done twice in a row since the first derivative of ex
2

is still 0 at x = 0:

lim
x→0

ex
2 − 1

x5/2
= lim
x→0

2xex
2

5/2x3/2

= lim
x→0

2ex
2

+ 4x2ex
2

15/4x1/2

=
8

15

1

x1/2

Since the function grows like 1√
x

at the singularity, the integral converges.
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