Midterm Review 1-Solutions
 Monday, February 9

Example Functions

When deciding whether a statement is true or trying to find a counterexample, the following functions may come in handy:

1. $1 / x, 1 / x^{2}, 1 / \sqrt{x}$. Or any $1 / x^{p}$, really, but these three are the simplest.
2. $f(x)=0$. It's always zero.
3. $f(x)=1$. It's always one.
4. $f(x)=e^{-x}$. Helpful since $\int_{1}^{\infty} x^{n} e^{-x} d x$ converges for any n.
5. Piecewise functions: If you want a positive function that satisfies $\lim _{x \rightarrow 0} f(x)=\infty$ but where $\int_{0}^{\infty} f(x) d x$ converges, you could try

$$
f(x)= \begin{cases}1 / \sqrt{x} & x \in[0,1] \\ 1 / x^{2} & x \in[1, \infty)\end{cases}
$$

For each of the following, assert that is true or find a counterexample. Assume that $f(x), g(x) \geq 0$ in all cases.

1. If $\int_{1}^{\infty} x f(x) d x$ converges, then $\int_{1}^{\infty} f(x) d x$ converges.

True by the comparison test, since $x f(x) \geq f(x)$ when $x \geq 1$.
2. If $\int_{1}^{\infty} f(x) d x$ converges, then $\int_{1}^{\infty} x f(x) d x$ converges.

False: $f(x)=1 / x^{2}$.
3. If $\int_{0}^{1} f(x) d x$ diverges, then $\int_{0}^{1} x f(x) d x$ diverges.

False: $f(x)=1 / x$.
4. If $\int_{1}^{\infty} f(x) d x$ and $\int_{1}^{\infty} g(x) d x$ converge, then $\int_{1}^{\infty} f(x)+g(x)$ converges.

True.
5. If $\int_{1}^{\infty} f(x) d x$ diverges, and $\int_{1}^{\infty} g(x) d x$ converges, then $\int_{1}^{\infty} f(x) g(x) d x$ diverges.

False: $f(x)=1 / x, g(x)=1 / x^{2}$, or just $g(x)=0$ will do.
6. If $\int_{0}^{\infty} f(x) d x$ always diverges.

False: $f(x)=e^{-x}, f(x)=0, f(x)= \begin{cases}1 & x \leq 1 \\ 1 / x^{2} & x \geq 1\end{cases}$
7. If $\int_{0}^{1} x f(x) d x$ diverges, then $\int_{0}^{1} f^{2}(x) d x$ diverges.

True: $x f(x) \leq f(x)$ for $0 \leq x \leq 1$, so $\int_{0}^{1} f(x)$ diverges. This in turn means that $\int_{0}^{1} f^{2}(x)$ diverges, though the proof is a little more subtle: one way to do it is to set $g(x)= \begin{cases}f(x) & f(x) \geq 1 \\ 0 & f(x)<1,\end{cases}$ in which case $\int_{0}^{1} f^{2}(x) \geq \int_{0}^{1} g^{2}(x) \geq \int_{0}^{1} g(x) \geq \int_{0}^{1} f(x)-1$. Since $\int_{0}^{1} f(x) d x$ diverges, $\int_{0}^{1} f^{2}(x) d x$ does too by the comparison test. Roughly, the idea behind this is that $\int f(x)$ diverges because of its vertical asymptotes, so the vertical asymptotes of $\int f^{2}(x)$ will be even "worse" as far as convergence is concerned since when $f(x)$ is large $f^{2}(x)$ will be much larger.
8. At least one of $\int_{0}^{1} f(x) d x$ and $\int_{0}^{1} 1 / f(x) d x$ will always diverge.

False: $f(x)=1$ or $f(x)=\sqrt{x}$ will do as counterexamples.
9. At least one of $\int_{1}^{\infty} f(x) d x$ and $\int_{1}^{\infty} 1 / f(x) d x$ will always diverge.

True, because for $\int_{1}^{\infty} f(x) d x$ to converge we need $\lim _{x \rightarrow \infty} f(x)=0$, in which case $\lim _{x \rightarrow \infty} 1 / f(x)=\infty$, making $\int_{1}^{\infty} 1 / f(x) d x$ diverge.
10. For every $f(x)$, there is a $g(x)$ such that $\int_{1}^{\infty} f(x)-g(x) d x$ converges.

True: let $g(x)=f(x)$.
11. For every $f(x)$, there is a $g(x)$ such that $\int_{1}^{\infty} f(x) g(x) d x$ converges.

True: Let $g(x)=0$ (if we require $g(x)>0$, then let $g(x)=\frac{1}{x^{2} f(x)}$).
12. If $\int_{0}^{1} f(x) / \sqrt{x}$ diverges, then $f(x)$ is unbounded on $[0,1]$ (that is, it has a vertical asymptote somewhere).
True: Suppose $f(x) \leq C$ on $[0,1]$. Then $\int_{0}^{1} f(x) / \sqrt{x} \leq \int_{0}^{1} C / \sqrt{x}$, which converges. This means that if $f(x)$ is bounded then $\int_{0}^{1} f(x) / x$ converges. By the contrapositive of that statement, if $f(x) / x$ diverges then $f(x)$ must be unbounded.
13. If $\int_{0}^{1} f(x) / x$ diverges, then $f(x)$ is unbounded on $[0,1]$.

False: $f(x)=1$.

Counting the Powers

Decide whether the following integrals converge or diverge:

1. $\int_{10}^{\infty} \frac{x^{1 / 2}(x+3)^{2 / 3}}{(x-5)^{2}} d x$

Looking at the highest powers of x gives $\int \frac{x^{1 / 2} x^{2 / 3}}{x^{2}}=\int \frac{1}{x^{5 / 6}}$, which diverges by the p-test.
2. $\int_{10}^{\infty} \frac{(x+3)^{4}+\sin (3 x)+(x-2)^{2}}{x^{3}(x-2)^{3}} d x$

Looking at the highest powers gives $\int \frac{x^{4}}{x^{6}}=\int 1 / x^{2}$, which converges.
3. $\int_{10}^{\infty} \frac{(x+\sqrt{x})^{5}}{(\sqrt{x}+1)^{7}(x-2)^{2}} d x$

Looking at the highest powers gives $\int \frac{x^{5}}{x^{7 / 2} x^{2}}=\int 1 / x^{1 / 2}$, which diverges.
4. $\int_{10}^{\infty} \frac{x(x+1)(x+2)(x+3)}{(x+1 / x+\sin (x))^{6}+\sin (\sin (x))} d x$

Looking at the highest powers gives $\int \frac{x^{4}}{x^{6}}=\int 1 / x^{2}$, which converges.

Counting the Zeros/L'Hospital's Rule

Decide whether the following integrals converge or diverge:

1. $\int_{0}^{4} \frac{1-\cos (x)}{x^{2}} d x$

The potential asymptote is at $x=0$. Check by L'Hospital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{\cos (x)}{2} \\
& =1 / 2
\end{aligned}
$$

The limit is finite, so the function is bounded and the integral converges.
2. $\int_{0}^{4} \frac{\sin (x) \ln (1+x)}{x^{8 / 3}} d x$

The potential asymptote is at $x=0$. Use the knowledge that $\lim _{x \rightarrow 0} \sin (x) / x=\lim _{x \rightarrow 0} \ln (1+x) / x=1$ (check with L'Hop's rule) to simplify:

$$
\frac{\sin (x) \ln (1+x)}{x^{8 / 3}}=\frac{\sin x}{x} \frac{\ln (1+x)}{x} \frac{1}{x^{2 / 3}} \approx \frac{1}{x^{2 / 3}}
$$

as $x \rightarrow 0$. The function therefore grows like $x^{2 / 3}$, and so the integral converges. x
3. $\int_{0}^{4} \frac{x^{2}-4}{x-2} d x$
$\frac{x^{2}-4}{x-2}=x+2$ when $x \neq 2$, so the function is bounded and the integral converges.
4. $\int_{0}^{4} \frac{\cos (x)+1}{x-\pi} d x$

The potential asymptote is at $x=\pi$. Using L'Hospital's rule gives

$$
\begin{aligned}
\lim _{x \rightarrow \pi} \frac{\cos (x)+1}{x-\pi} & =\lim _{x \rightarrow \pi} \frac{-\sin (x)}{1} \\
& =0
\end{aligned}
$$

So the function is bounded, and the integral converges.
5. $\int_{0}^{4} \frac{\cos (x)+1}{(x-\pi)^{2}} d x$

Same as before, but one more step of L'Hop's rule is needed.

$$
\begin{aligned}
\lim _{x \rightarrow \pi} \frac{\cos (x)+1}{(x-\pi)^{2}} & =\lim _{x \rightarrow \pi} \frac{-\sin (x)}{2(x-\pi)} \\
& =\lim _{x \rightarrow \pi} \frac{-\cos (x)}{2} \\
& =1 / 2
\end{aligned}
$$

The function is again bounded, and the integral converges. Note that if the denominator had been $(x-\pi)^{3}$, or raised to any power greater than 3 , then the integral would have diverges. Any power $2<p<3$ would give a convergent integral.
6. $\int_{0}^{4} \frac{e^{x^{2}}-1}{x^{5 / 2}} d x$

L'Hop's rule at $x=0$, done twice in a row since the first derivative of $e^{x^{2}}$ is still 0 at $x=0$:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x^{5 / 2}} & =\lim _{x \rightarrow 0} \frac{2 x e^{x^{2}}}{5 / 2 x^{3 / 2}} \\
& =\lim _{x \rightarrow 0} \frac{2 e^{x^{2}}+4 x^{2} e^{x^{2}}}{15 / 4 x^{1 / 2}} \\
& =\frac{8}{15} \frac{1}{x^{1 / 2}}
\end{aligned}
$$

Since the function grows like $\frac{1}{\sqrt{x}}$ at the singularity, the integral converges.

