17.1: Second-order Linear Equations

Wednesday, April 15

Recap: First-Order Linear Equations

To solve a differential equation of the form y' + P(x)y = Q(x)...

- 1. Set $I(x) = e^{\int P(x) dx}$, noting that I' = PI.
- 2. Multiply the equation by I, getting Iy' + IPy = IQ.
- 3. Since Iy' + IPy = (Iy)', this turns into $Iy = C + \int IQ$
- 4. Condensed solution: $y = (C + \int IQ)/I$, for any C.

Solve the linear systems:

1.
$$y' = x - y$$

3.
$$y'/x - y/x = 3, y(1) = y'(1) = -3$$

$$2. \ y' - y = e^x$$

4.
$$2xy' + y = 6x, x > 0, y(4) = 20$$

Interlude: Complex Numbers

Let i be a solution to the equation $x^2 + 1 = 0$, so that $i^2 = -1$.

- 1. Write the product (1+2i)(2-3i) in the form a+bi.
- 2. Write the product (3+2i)(3-2i) in the form a+bi.
- 3. Find the two solutions to $x^2 + 3 = 0$.
- 4. Find the three solutions to $x^3 1 = 0$ (Hint: one of the roots, r, is easy to find. Then divide $x^3 1$ by (x r)).
- 5. Let $z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$. Find $z^2, z^3, z^4, z^5, z^6, z^7$, and z^8 and plot them all in the complex plane.

Families of Solutions

Suppose that f(x) and g(x) are both solutions to the differential equation y'' - y = 0.

- 1. Show that Af(x) + Bg(x) is also a solution for any constants A and B.
- 2. Find infinitely many functions that solve y'' = 1.
- 3. Find all of the solutions. Can you prove that there aren't any others?

Second-order Linear Equations

To solve the system ay'' + by' + cy = 0, find the roots r_1, r_2 to the equation $ax^2 + bx + c = 0$.

- 1. If $r_1 \neq r_2$, then the general solution is $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$.
- 2. If $r_1 = r_2$, then the general solution is $y = c_1 e^{rx} + c_2 x e^{rx}$.
- Verify that these are in fact solutions.

In the event that $r_1, r_2 = \alpha \pm \beta i$, it is considered impolite to give an imaginary solution to a real differential equation. Use Euler's identity $e^{i\theta} = \cos \theta + i \sin \theta$ to find real solutions instead. Find solutions to the following linear differential equations:

1.
$$y'' + y = 0$$

2.
$$y'' - 4y' + y = 0$$

3.
$$y'' + 4y' + 4y = 0$$

4.
$$y'' - y' - 12y = 0, y(1) = 0, y'(1) = 1$$

5.
$$y'' = y', y(0) = 1, y(1) = 2$$

6.
$$2y'' + y' - y = 0, y(0) = 3, y'(0) = 3$$