17.1: Second-order Linear Equations
 Wednesday, April 15

Recap: First-Order Linear Equations

To solve a differential equation of the form $y^{\prime}+P(x) y=Q(x) \ldots$

1. Set $I(x)=e^{\int P(x) d x}$, noting that $I^{\prime}=P I$.
2. Multiply the equation by I, getting $I y^{\prime}+I P y=I Q$.
3. Since $I y^{\prime}+I P y=(I y)^{\prime}$, this turns into $I y=C+\int I Q$
4. Condensed solution: $y=\left(C+\int I Q\right) / I$, for any C.

Solve the linear systems:

1. $y^{\prime}=x-y$
2. $y^{\prime}-y=e^{x}$
3. $y^{\prime} / x-y / x=3, y(1)=y^{\prime}(1)=-3$
4. $2 x y^{\prime}+y=6 x, x>0, y(4)=20$

Interlude: Complex Numbers

Let i be a solution to the equation $x^{2}+1=0$, so that $i^{2}=-1$.

1. Write the product $(1+2 i)(2-3 i)$ in the form $a+b i$.
2. Write the product $(3+2 i)(3-2 i)$ in the form $a+b i$.
3. Find the two solutions to $x^{2}+3=0$.
4. Find the three solutions to $x^{3}-1=0$ (Hint: one of the roots, r, is easy to find. Then divide $x^{3}-1$ by $(x-r))$.
5. Let $z=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$. Find $z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}$, and z^{8} and plot them all in the complex plane.

Families of Solutions

Suppose that $f(x)$ and $g(x)$ are both solutions to the differential equation $y^{\prime \prime}-y=0$.

1. Show that $A f(x)+B g(x)$ is also a solution for any constants A and B.
2. Find infinitely many functions that solve $y^{\prime \prime}=1$.
3. Find all of the solutions. Can you prove that there aren't any others?

Second-order Linear Equations

To solve the system $a y^{\prime \prime}+b y^{\prime}+c y=0$, find the roots r_{1}, r_{2} to the equation $a x^{2}+b x+c=0$.

1. If $r_{1} \neq r_{2}$, then the general solution is $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$.
2. If $r_{1}=r_{2}$, then the general solution is $y=c_{1} e^{r x}+c_{2} x e^{r x}$.

- Verify that these are in fact solutions.

In the event that $r_{1}, r_{2}=\alpha \pm \beta i$, it is considered impolite to give an imaginary solution to a real differential equation. Use Euler's identity $e^{i \theta}=\cos \theta+i \sin \theta$ to find real solutions instead.
Find solutions to the following linear differential equations:

1. $y^{\prime \prime}+y=0$
2. $y^{\prime \prime}-4 y^{\prime}+y=0$
3. $y^{\prime \prime}+4 y^{\prime}+4 y=0$
4. $y^{\prime \prime}-y^{\prime}-12 y=0, y(1)=0, y^{\prime}(1)=1$
5. $y^{\prime \prime}=y^{\prime}, y(0)=1, y(1)=2$
6. $2 y^{\prime \prime}+y^{\prime}-y=0, y(0)=3, y^{\prime}(0)=3$
