17.1: Second-order Linear Equations
 Wednesday, April 15

Recap: First-Order Linear Equations

To solve a differential equation of the form $y^{\prime}+P(x) y=Q(x) \ldots$

1. Set $I(x)=e^{\int P(x) d x}$, noting that $I^{\prime}=P I$.
2. Multiply the equation by I, getting $I y^{\prime}+I P y=I Q$.
3. Since $I y^{\prime}+I P y=(I y)^{\prime}$, this turns into $I y=C+\int I Q$
4. Condensed solution: $y=\left(C+\int I Q\right) / I$, for any C.

Solve the linear systems:

1. $y^{\prime}=x-y$

$$
\begin{aligned}
y^{\prime}+y & =x \\
I & =e^{x} \\
e^{x} y^{\prime}+e^{x} y & =x e^{x} \\
\left(e^{x} y\right)^{\prime} & =x e^{x} \\
e^{x} y & =x e^{x}-e^{x}+C \\
y & =x-1+C e^{-x}
\end{aligned}
$$

2. $y^{\prime}-y=e^{x}$

$$
\begin{aligned}
I & =e^{-x} \\
\int I Q & =x \\
y & =C e^{x}+x e^{x}
\end{aligned}
$$

3. $y^{\prime} / x-y / x=3, y(1)=y^{\prime}(1)=-3$

$$
\begin{aligned}
y^{\prime}-y & =3 x \\
I & =e^{-x} \\
\int I Q & =3 \int x e^{-x} \\
& =-3 x e^{-x}-3 e^{-x} \\
y & =e^{x}\left(C-3 e^{-x}-3 x e^{-x}\right) \\
& =C e^{x}-3 x-3 \\
y & =-3 x-3
\end{aligned}
$$

4. $2 x y^{\prime}+y=6 x, x>0, y(4)=20$

$$
\begin{aligned}
y^{\prime}+y / 2 x & =3 \\
I & =e^{\ln x / 2} \\
& =\sqrt{x} \\
\int I Q & =\int 3 \sqrt{x} \\
& =2 x^{3 / 2} \\
y & =C / \sqrt{x}+2 x
\end{aligned}
$$

Interlude: Complex Numbers

Let i be a solution to the equation $x^{2}+1=0$, so that $i^{2}=-1$.

1. Write the product $(1+2 i)(2-3 i)$ in the form $a+b i$.

$$
(1+2 i)(2-3 i)=2-3 i+4 i-6 i^{2}=8+i
$$

2. Write the product $(3+2 i)(3-2 i)$ in the form $a+b i$.

$$
(3+2 i)(3-2 i)=9-6 i+6 i-4 i^{2}=13
$$

3. Find the two solutions to $x^{2}+3=0$.
$x+ \pm \sqrt{-3}= \pm i \sqrt{3}$.
4. Find the three solutions to $x^{3}-1=0$ (Hint: one of the roots, r, is easy to find. Then divide $x^{3}-1$ by $(x-r))$.
$x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, so the solutions are $x=1$ and

$$
x=\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1 \pm i \sqrt{3}}{2}
$$

5. Let $z=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$. Find $z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}$, and z^{8} and plot them all in the complex plane.

The powers of z all lie on the unit circle, going around counter-clockwise.

Families of Solutions

Suppose that $f(x)$ and $g(x)$ are both solutions to the differential equation $y^{\prime \prime}-y=0$.

1. Show that $A f(x)+B g(x)$ is also a solution for any constants A and B.

$$
(A f+B g)^{\prime \prime}-(A f+B g)=A f^{\prime \prime}-A f+B g^{\prime \prime}-B g=0+0=0
$$

2. Find infinitely many functions that solve $y^{\prime \prime}=1$.

All functions of the form $y=x^{2} / 2+A x+B$ are solutions.
3. Find all of the solutions. Can you prove that there aren't any others?

If $y^{\prime \prime}-1=0$, then $\left(y^{\prime}-x\right)^{\prime}=0$ and so by the Mean Value Theorem $y^{\prime}-x=A$. Since $y^{\prime}-x-A=$ $\left(y-x^{2} / 2-A x\right)^{\prime}=0$, use the MVT again to get $y-x^{2} / 2-A x=B$, and so $y=x^{2} / 2+A x+B$. These solutions are therefore the only ones.

Second-order Linear Equations

To solve the system $a y^{\prime \prime}+b y^{\prime}+c y=0$, find the roots r_{1}, r_{2} to the equation $a x^{2}+b x+c=0$.

1. If $r_{1} \neq r_{2}$, then the general solution is $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$.
2. If $r_{1}=r_{2}$, then the general solution is $y=c_{1} e^{r x}+c_{2} x e^{r x}$.

- Verify that these are in fact solutions.

In the event that $r_{1}, r_{2}=\alpha \pm \beta i$, it is considered impolite to give an imaginary solution to a real differential equation. Use Euler's identity $e^{i \theta}=\cos \theta+i \sin \theta$ to find real solutions instead.
Find solutions to the following linear differential equations:

1. $y^{\prime \prime}+y=0$

$$
y=A \sin \theta+B \cos \theta
$$

2. $y^{\prime \prime}-4 y^{\prime}+y=0$

$$
y=A e^{r_{1} x}+B e^{r_{2} x}, r_{1}, r_{2}=2 \pm \sqrt{3}
$$

3. $y^{\prime \prime}+4 y^{\prime}+4 y=0$

$$
y=A e^{-2 x}+B x e^{-2 x}
$$

4. $y^{\prime \prime}-y^{\prime}-12 y=0, y(1)=0, y^{\prime}(1)=1$

$$
y=A e^{-3 x}+B e^{4 x}
$$

5. $y^{\prime \prime}=y^{\prime}, y(0)=1, y(1)=2$

$$
\begin{aligned}
& y=A e^{x}+B \\
& y=e^{x} / e+1-1 / e
\end{aligned}
$$

6. $2 y^{\prime \prime}+y^{\prime}-y=0, y(0)=3, y^{\prime}(0)=3$

$$
\begin{aligned}
y & =A e^{x / 2}+B e^{x} \\
A+B & =3 \\
A / 2+B & =3 \\
B & =3 \\
y & =3 e^{x}
\end{aligned}
$$

