Integration by Parts-Solutions
 Wednesday, January 21

Tips

- "L-I-A-T-E"

When in doubt, a good heuristic is to choose u to be the first type of function in the following list:

1. L-Logartithmic functions $\left(\ln (x), \log _{2}(x)\right)$.
2. I-Inverse trig functions $(\arcsin (x), \arccos (x), \arctan (x)$.
3. A-Algebraic functions $\left(x^{2}+2 x, 1 / x, \sqrt{1+x^{2}}\right)$.
4. T-Trig functions $(\sin (x), \cos (x), \tan (x))$.
5. E-Exponential functions $\left(e^{2 x}, 5^{x}\right)$.

- If that doesn't lead to a clear choice for u, instead choose $d v$ so that it can be easily integrated.

Example: If we want to evaluate $\int x^{3} / \sqrt{1+x^{2}} d x$, there is not a clear choice for u since the entire function is algebraic. If we look at choices for $d v$ instead, we can see that although $1 / \sqrt{1+x^{2}}$ might not have a simple antiderivative, $x / \sqrt{1+x^{2}}$ has $\sqrt{1+x^{2}}$ as an antiderivative. So we should choose $d v=x / \sqrt{1+x^{2}}$ and $u=x^{2}$.

Warm-up

Use integration by parts to evaluate the following integrals:

1. $\int x e^{x} d x$

Pick $u=x, d v=e^{x} d x$. Then $\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}$.
2. $\int_{1}^{e} \ln (x) d x$

Pick $u=\ln (x), d v=d x$. Then $\int_{1}^{e} \ln (x) d x=\left.x \ln (x)\right|_{1} ^{e}-\int_{1}^{e} d x=e-e+1=1$.
3. $\int x^{3} \sqrt{1+x^{2}} d x$

Let $u=x^{2}, d v=x \sqrt{1+x^{2}} d x$, so $v=\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}, d u=2 x d x$. Then $\int x^{3} \sqrt{1+x^{2}} d x=\frac{x^{2}}{3}\left(1+x^{2}\right)^{3 / 2}-$ $\frac{1}{3} \int 2 x\left(1+x^{2}\right)^{3 / 2}=\frac{x^{2}}{3}\left(1+x^{2}\right)^{3 / 2}-\frac{2}{15}\left(1+x^{2}\right)^{5 / 2}$.
Alternatively, substitute $y=x^{2}$ to get $\frac{1}{2} \int y \sqrt{1+y} d y$ to get a slightly simpler problem. Then let $u=y, d v=\sqrt{1+y} d y$ and get $\frac{1}{3} y(1+y)^{3 / 2}-\frac{1}{3} \int(1+y)^{3 / 2}=\frac{1}{3} y(1+y)^{3 / 2}-\frac{2}{15}(1+y)^{5 / 2}=\frac{1}{3} x^{2}(1+$ $\left.x^{2}\right)^{3 / 2}-\frac{2}{15}\left(1+x^{2}\right)^{5 / 2}$.

Speed Round

For the following problems, you do not have to evaluate the integral. Simply circle the part of the function that you would set equal to u ($d v$ will implicitly be everything you did not circle). Answer each batch of problems as quickly and as accurately as you can.

Round 1

1. $\int x e^{3 x} d x: \mathrm{u}=\mathrm{x}$
2. $\int x \sin (5 x) d x: \mathrm{u}=\mathrm{x}$
3. $\int x^{2} \ln (x) d x: \mathrm{u}=\ln x$
4. $\int x^{2} e^{-5 x} d x: u=x^{2}$
5. $\int x^{2} \cos (3 x) d x: u=x^{2}$
6. $\int\left(x^{3}+4\right) e^{2 x} d x: u=x^{3}+4$ (or split the integral into two parts first)
7. $\int \arcsin (x) d x: u=\arcsin (x)$
8. $\int x \arctan (x) d x: u=\arctan (x)$
9. $\int x \ln (x) d x: u=\ln (x)$

Round 2

This time the LIATE rule might not always get you the answer. Write down your choice of u if you cannot circle it properly.

1. $\int x^{2} 2^{x} d x: \mathrm{u}=x^{2}$
2. $\int \ln (x) / \sqrt{x} d x: u=\ln (x)$
3. $\int x^{3} / \sqrt{1+x^{2}} d x: u=x^{2}$ (or substitute $y=x^{2}$ first)
4. $\int e^{x} \sin (2 x) d x$: Either choice is okay; you will have to integrate parts twice before getting the integral you started with as part of a larger expression.
5. $\int x^{5} e^{x^{2}} d x: u=x^{4}$ (or substitute $y=x^{2}$ first)
6. $\int \ln (x) / x^{2} d x: u=\ln x$
7. $\int e^{2 x} \sin \left(e^{x}\right) d x: u=e^{x}$ (or substitute $y=e^{x}$ first)
8. $\int x \ln ^{2}(x) d x: u=\ln ^{2}(x)$
9. $\int \arctan (x) d x: u=\arctan (x)$

Round 3

Using integration by parts might not always be the correct (or best) solution. For the following problems, indicate whether you would use integration by parts (with your choices of u and $d v$), substitution (with your choice of u), or neither.

1. $\int x \ln (x) d x$ IBP: $u=\ln x$
2. $\int \ln (x) / x d x$: sub $y=\ln x$
3. $\int e^{x} d x$: just integrate
4. $\int \frac{1}{x \ln (x)} d x: \operatorname{sub} y=\ln x$
5. $\int \arccos (2 x) d x$: IBP $u=\arccos (2 x)$
6. $\int e^{\cos (x)} \sin (x) d x$: sub $y=\cos x$
7. $\int e^{x} \sin (x) d x$: IBP $u=e^{x}$ (or $\left.u=\sin x\right)$
8. $\int x^{3} \cos \left(x^{2}\right) d x$: IBP $u=x^{2}$ (or sub $y=x^{2}$)
9. $\int 1 /\left(1+x^{2}\right) d x$: just integrate (it's arctan)
10. $\int x \tan ^{2}(x) d x$: IBP $u=x$
11. $\int x^{5} e^{-x^{2}} d x$: IBP $u=x^{4}$ (or sub $y=x^{2}$)
12. $\int x+\sin (x) d x$: just integrate.

Bonus

Evaluate $\int_{0}^{1} x^{5} e^{-x}$ using integration by parts. Then use the fact that $0 \leq \int_{0}^{1} x^{5} e^{-x} \leq 1$ (why?) to put an upper and lower bound on e.
Integrating by parts five times in a row gives

$$
\int_{0}^{1} x^{5} e^{-x}=-\left.e^{-x}\left(x^{5}+5 x^{4}+20 x^{3}+60 x^{2}+120 x+120\right)\right|_{0} ^{1}=120-326 / e
$$

The integral must be greater than zero because the function is positive on $[0,1]$, and it must be less than 1 since the function is less than 1 on $[0,1]$. Therefore

$$
\begin{aligned}
0 & \leq 120-326 / e \\
0 & \leq 120 e-326 \\
326 / 120 & \leq e \\
1 & \geq 120-326 / e \\
e & \geq 120 e-326 \\
326 / 119 & \geq e
\end{aligned}
$$

Put together, this gives the (approximate) bounds $2.71 \leq e \leq 2.74$. Evaluating an integral with a higher power of x will give an even more accurate bound.

