Integration by Parts

Wednesday, January 21

Tips

• "L-I-A-T-E"

When in doubt, a good heuristic is to choose u to be the first type of function in the following list:

- 1. L-Logartithmic functions $(\ln(x), \log_2(x))$.
- 2. I-Inverse trig functions $(\arcsin(x), \arccos(x), \arctan(x))$.
- 3. A-Algebraic functions $(x^2 + 2x, 1/x, \sqrt{1+x^2})$.
- 4. T-Trig functions $(\sin(x), \cos(x), \tan(x))$.
- 5. E-Exponential functions $(e^{2x}, 5^x)$.
- If that doesn't lead to a clear choice for u, instead choose dv so that it can be easily integrated.
- **Example:** If we want to evaluate $\int x^3/\sqrt{1+x^2} \, dx$, there is not a clear choice for u since the entire function is algebraic. If we look at choices for dv instead, we can see that although $1/\sqrt{1+x^2}$ might not have a simple antiderivative, $x/\sqrt{1+x^2}$ has $\sqrt{1+x^2}$ as an antiderivative. So we should choose $dv = x/\sqrt{1+x^2}$ and $u = x^2$.

Warm-up

Use integration by parts to evaluate the following integrals:

1. $\int xe^x dx$

- 2. $\int_1^e \ln(x) \, dx$
- 3. $\int x^3 \sqrt{1+x^2} \, dx$

Speed Round

For the following problems, you do not have to evaluate the integral. Simply circle the part of the function that you would set equal to u (dv will implicitly be everything you did not circle). Answer each batch of problems as quickly and as accurately as you can.

Round 1

1. $\int x e^{3x} dx$	$4. \int x^2 e^{-5x} dx$	7. $\int \arcsin(x) dx$
2. $\int x \sin(5x) dx$	5. $\int x^2 \cos(3x) dx$	8. $\int x \arctan(x) dx$
3. $\int x^2 \ln(x) dx$	6. $\int (x^3 + 4)e^{2x} dx$	9. $\int x \ln(x) dx$

Round 2

This time the LIATE rule might not always get you the answer. Write down your choice of u if you cannot circle it properly.

 1. $\int x^2 2^x dx$ 4. $\int e^x \sin(2x) dx$ 7. $\int e^{2x} \sin(e^x) dx$

 2. $\int \ln(x) / \sqrt{x} dx$ 5. $\int x^5 e^{x^2} dx$ 8. $\int x \ln^2(x) dx$

 3. $\int x^3 / \sqrt{1 + x^2} dx$ 6. $\int \ln(x) / x^2 dx$ 9. $\int \arctan(x) dx$

Round 3

Using integration by parts might not always be the correct (or best) solution. For the following problems, indicate whether you would use integration by parts (with your choices of u and dv), substitution (with your choice of u), or neither.

1. $\int x \ln(x) dx$	5. $\int \arccos(2x) dx$	9. $\int 1/(1+x^2) dx$
2. $\int \ln(x)/x dx$	6. $\int e^{\cos(x)} \sin(x) dx$	10. $\int x \tan^2(x) dx$
3. $\int e^x dx$	7. $\int e^x \sin(x) dx$	11. $\int x^5 e^{-x^2} dx$
4. $\int \frac{1}{x \ln(x)} dx$	8. $\int x^3 \cos(x^2) dx$	12. $\int x + \sin(x) dx$

Bonus

Evaluate $\int_0^1 x^5 e^{-x}$ using integration by parts. Then use the fact that $0 \leq \int_0^1 x^5 e^{-x} \leq 1$ (why?) to put an upper and lower bound on e.